
Integrating Anonymous Signature Schemes into

PKI using Dynamic Cryptographic Accumulators

Hendrik Dettmer

March 23, 2009

Diplomarbeit

Advised by: Dipl.-Ing. Sven Schäge

Department of Electrical Engineering and Information Sciences
Ruhr-University Bochum

Chair for Network and Data Security (NDS)
Prof. Dr. Jörg Schwenk

Eidesstattliche Erklärung

Hiermit versichere ich, dass ich meine Diplomarbeit selbst verfasst und keine
anderen als die angegebenen Quellen und Hilfsmittel benutzt, sowie Zitate ken-
ntlich gemacht habe.

Bochum Deutschland, 23.03.2009
Ort, Datum Hendrik Dettmer

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Aim of the Thesis . 2
1.3 Organization of the Thesis . 3

2 Mathematical Background 4
2.1 Notation and Definitions . 4
2.2 Elliptic Curves . 8
2.3 Zero-knowledge Protocols . 11

2.3.1 Non-interactive Zero-knowledge Protocols 13
2.4 Complexity Assumptions . 14

3 Authentication 16
3.1 Digital Signature Schemes . 18
3.2 Digital Certificates . 19
3.3 Public Key Infrastructures . 21

3.3.1 Drawbacks of PKIs . 21
3.4 Group Signatures Schemes . 22

3.4.1 Formal Definition of Group Signatures 23
3.4.2 Overview of the Presented Group Signature Scheme . . . 25
3.4.3 Security Requirements . 25

4 Dynamic Cryptographic
Accumulators 29
4.1 Definitions of Cryptographic Accumulators 30
4.2 Definition of Dynamic Cryptographic Accumulators 32

5 Dynamic Accumulator Scheme from Bilinear Pairings 35
5.1 Features of the Scheme . 35
5.2 Overview of the Scheme . 36

i

5.3 Group Key Generation . 39

5.4 User PKI Certificate Generation 39

5.5 Join Protocol . 40

5.5.1 Proof of Knowledge . 42

5.6 Signature Protocol . 43

5.6.1 Sign . 44

5.6.2 Verify . 45

5.6.3 Security Proof of the Underlying Zero-knowledge Protocol 46

5.7 Update Witness Algorithm . 50

5.8 Update Accumulator Algorithm 51

5.9 Open Algorithm . 51

5.10 Judge Algorithm . 52

5.10.1 Proof of the Non-interactive Zero-knowledge Protocol . . 53

5.11 Revoke Algorithm . 55

5.12 Proof of the Security Requirements 55

6 Environment and
Development 59

6.1 Programming Language and Libraries 60

6.2 Implementation of the Scheme 61

6.2.1 User PKI Certificate Generation 61

6.2.2 Group Key Generation . 63

6.2.3 Join Protocol . 64

6.2.4 Signature Protocol . 67

6.2.5 Update Witness Algorithm 68

6.2.6 Update Accumulator Algorithm 68

6.2.7 Open Algorithm . 69

6.2.8 Revoke Algorithm . 69

6.2.9 Judge Algorithm . 70

6.3 Compiling on Different Platforms 70

6.4 Coding Problems . 72

6.5 Integrating a Test Portal . 73

6.6 Graphical User Interface . 74

7 Future Work 76

8 Conclusion 77

ii

A Installation Procedure 82
A.1 Linux Installation . 82

A.1.1 Server Installation . 82
A.2 Firefox Plugin Installation . 83

B Space Comparison with PKI-based Certificates 85
B.1 X.509 Certificate and Signature 85
B.2 Dynamic Cryptographic Accumulator Signature 87

C Speed Comparison with PKI-based Certificates 90

iii

List of Figures

2.1 Example elliptic curves . 8
2.2 Point addition on a elliptic curve 9
2.3 Point doubling on a elliptic curve 9

5.1 Illustration of the different use symbols 37
5.2 Illustration of a chronology overview of the scheme 38
5.3 Illustration of the group key generation 39
5.4 Illustration of the user PKI certificate generation 40
5.5 Illustration of the join protocol 40
5.6 Illustration of the sign algorithm 44
5.7 Illustration of the verify algorithm 45
5.8 Diagram of the simulation in the random oracle model 50
5.9 Illustration of the update witness algorithm 50
5.10 Illustration of the update accumulator algorithm 51
5.11 Illustration of the open algorithm 52
5.12 Illustration of the judge algorithm 53
5.13 Illustration of the revoke algorithm 55

6.1 Overview of the used programs 60
6.2 Raw description of the program CMake 71
6.3 Overview of the Mozilla plugin scheme 75

iv

Abstract

This thesis centers around the integration of an implementation of an
efficient group signature scheme with efficient revocation into a public key
infrastructure. The better part of the document, the used dynamic cryp-
tographic accumulator scheme is described. The various backgrounds of
this scheme are explained and a complete approach to the issue is given.
Also the practical implementation of this theoretical idea is illustrated
and advices are given.
Group signature schemes allow a member of a group to anonymously
sign messages on the group’s behalf. In case of dispute it is possible in
our scheme that a group manager can open a signature and revoke the
anonymity requirement. We concentrate on the group signature scheme
by Lan Nguyen that was presented at the RSA conference 2005.
The thesis contains a brief introduction to the topic together with the re-
quired mathematical and cryptographic preliminaries. We give a detailed
description of our implementation and compare its space and speed com-
plexity with existing PKI-based protocols.
Although our implementation accounts for privacy issues which are not
addressed by classical PKI-based authentication, the efficiency of our so-
lution is still comparable.

Keywords: dynamic cryptographic accumulators, elliptic curve cryptog-
raphy, group signatures, bilinear pairings

v

vi

1 Introduction

In this section we present the motivation for the thesis and an introduction to
the field of anonymous authentication and group signatures.

1.1 Motivation

Before the invention of computers, cryptography was used mostly for confi-
dentiality. The aim was the encryption of communication. Today, due to the
connection of computers and the establishment of the Internet, many other se-
curity requirements come into focus of science.
For example, everybody who uses the Internet hopes that certain security goals
hold, like the secure retrieval of E-mails over an untrustworthy network. But
especially in those large networks new problems arise. Take a user who wants to
buy a product in an online shop. It must be ensured that the user is connected
to the correct server and not to some adversary, which is spoofing the servers
address or is just exploiting a typing error of the user when entering the server’s
internet address.
To encounter this problem, digital certificates are used to identify the web-
site. These certificates are sent by the server to the client and the client uses
a database, embedded in the browser, to verify the certificate. Although this
method has flaws, in practice it works most of the time very well.
Most users do not have an own digital certificate. So there is no way that a
user can sign a contract or a bid in an online auction. Today, most of the online
shops use a username and password to authenticate the user. If an adversary
can find out or steal this combination, it can do everything in an online shop on
the user’s behalf. The user can try to deny the actions took by the adversary,
but it is hard to prove that he is not responsible for them. The main problem
is that most users use very short and weak passwords, which are easy to guess
for an adversary.
Most of the time, the adversary does not even have to try all possible passwords.
An easier way is to put up an Internet forum or any other online community
and try to bait the users to this site. Most users log in on different sites with
the same password, so they have lesser passwords to remember. The adversary
takes the voluntarily given passwords and usernames and tries them out on
many other sites.
Besides authentication another important security requirement is privacy or
anonymity. In most applications anonymity is not intended because the provider

1

CHAPTER 1. INTRODUCTION

of a service wants to know which user to charge. But, as will be shown in this
thesis, accountability and anonymity can both be accomplished at the same
time in a cryptosystem.

1.2 Aim of the Thesis

This thesis aims at implementing a group signature scheme. A group signature
scheme combines different security requirements such as anonymity and trace-
ability. It seems that it is not possible to trace someone if everyone in the group
is anonymous. However, it turns out that this intuition is not right. Through
the use of zero-knowledge proofs a signer can prove that a certain value, his
identification number, is in fact accumulated in a publicly accessible accumu-
lator that is managed by a trusted third party, the so called group manager.
When the group signature scheme is correctly setup, this also proves that he is
a member of the group.
This solution has many advantages when compared with existing applications.
For example, the computational size of the proposed scheme is not connected
to the number of members in the group.
As the title of the thesis indicates, our group signature scheme is integrated into
the public key infrastructure (PKI) and does not stand alone. A PKI provides
the identification of entities in a network and many PKIs are very well estab-
lished in practical systems. We can use these established trust hierarchies for
authentication purposes and do not need to build up our own. Besides, a PKI
provides certificates and they can be used to generate a secure channel, so that
a new member can securely join the group.
Another aim is to provide proof-of-concept of practicality of authentication sys-
tems that account for privacy issues. We address the current trend in cryptog-
raphy to base cryptosystems on elliptic curve groups with a bilinear pairing.
Such systems have the advantage that cryptographic parameters can be much
shorter than in traditional cryptographic settings.
Although by now there exists a large amount of literature on cryptosystems that
use bilinear pairings, practical systems are rare. This is partly due to the more
involved theory behind pairing-based cryptography.
All mathematical proofs and theoretical approaches are included in this thesis,
to show the entire way from a mathematical idea to an implemented program.
Technically, the focus of this implementation lies on the programming language
C++ and the executability of the program on different platforms and operating
systems.

2

1.3. ORGANIZATION OF THE THESIS

1.3 Organization of the Thesis

This thesis is organized as follows:
Chapter 2 provides the general mathematical background. After some basic
definitions, Section 2.2 presents elliptic curves. This is followed by an introduc-
tion into zero-knowledge protocols in Section 2.3. The chapter is concluded in
Section 2.4, where complexity assumptions are described, which several cryp-
tosystems are based on.
Chapter 3 discusses authentication in general and signature based authentica-
tion in more detail. The first section presents an introduction to digital signature
schemes. In the next section, digital certificates and their connection to digital
signatures are described. This evolves to public key infrastructures in Section
3.3. The focus then shifts on group signature schemes in Section 3.4.
Chapter 4 focuses on dynamic cryptographic accumulator schemes. After first
presenting the accumulator in Section 4.1, the dynamic accumulator definition
is introduced in Section 4.2. The dynamic accumulator is used in our group
signature scheme for efficient revocation of group members.
Chapter 5 discusses our group signature scheme. In the first section, some fea-
tures of our scheme are highlighted. After that, Section 5.2 gives an overview
over the scheme. The next sections describe the different components of our
scheme. The chapter concludes with Section 5.12, a proof of security of our
scheme.
Chapter 6 presents the implementation of our group signature scheme. After a
short overview of the developed programs, Section 6.1 describes our claim for
a programming language and the used software libraries. Section 6.2 is dealing
with the implementation of the programs and processes. This is followed by
Section 6.3 and a discussion on compiling on different platforms. Section 6.4
discusses problems, which were encountered during the implementation phase.
Then, the focus shifts on constructing a web portal for testing purposes. The
chapter concludes with a presentation of a graphical user interface for our im-
plementation in Section 6.6.
Chapter 7 discusses future work and Chapter 8 gives a conclusion.
In Appendix A the installation of our scheme is described. Appendix B com-
pares the size of standard digital signature with the signatures generated in
our scheme. In Appendix C, the executing speed of our scheme is compared to
standard public key infrastructure scheme.

3

2 Mathematical Background

Here, we provide the mathematical definitions required throughout this thesis.
Most of the definitions are directed at introducing elliptic curves and pairings.
Both play a very important role in the implemented group signature scheme.

2.1 Notation and Definitions

A finite group is a group with finitely many elements. All other definitions in
this chapter make use of groups or fields to structure more complex entities.

Definition 2.1.1. Finite Group
A group (G, ◦) is a finite set G together with a binary operation ◦ (the group
operation) if both satisfy the following properties:

� Closure. For all a, b ∈ G the result of the operation ◦ yields to an element
c also in G: c = a ◦ b with c ∈ G.

� Associativity. The binary group operation is associative: a ◦ (b ◦ c) =
(a ◦ b) ◦ c,∀a, b, c ∈ G.

� Identity. There is an identity element x such that: a◦x = x◦a = a,∀a ∈
G.

� Inverse. For every element a ∈ G there must be an inverse a−1 such
that: a ◦ a−1 = 1 ∀a ∈ G.

A cyclic group is a special group in which all elements can be represented as a
power of a generator of the group. In cryptography most groups are cyclic.

Definition 2.1.2. Cyclic Group
A group G is called cyclic if it can be generated by a single element: 〈a〉 = G,
a ∈ G.

In a multiplicative cyclic group exponentiation is easy but the computation of
the discrete logarithm is believed to be very hard if the group size is sufficiently
large.

4

2.1. NOTATION AND DEFINITIONS

Definition 2.1.3. Discrete Logarithm
Let p be a prime and G = (Z/pZ) a cyclic group with order p. Let g be a
generator of G, so that every element in G can be written as a = gb. For a
group element x the discrete logarithm of x to the base g is an integer n such
that x = gn and n ∀ n; 0 ≤ n ≤ (p− 2).

Since elliptic curves are defined over a fields, we also present a definition of finite
fields. A field is a group with some assumptions as defined below.

Definition 2.1.4. Field
A field K is defined as a finite group in which two binary operations, called
addition and multiplication, are present, such that:

� K is an Abelian group under addition,

� multiplication is associative and possess an identity element,

� multiplication is commutative,

� every nonzero element is invertible with respect of multiplication,

� multiplication is distributive with respect to addition.

Central to the definition of pairings is the notion of elliptic curves, which are
smooth, projective algebraic curves of genus one.

Definition 2.1.5. Elliptic Curve
An elliptic curve E over a field K denoted by E/K is given by the Weierstraß
equation

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

where the coefficients a1, a2, a3, a4, a6 are elements of K.

Definition 2.1.6. Bilinear Pairings
Let G1,G2 be cyclic additive groups generated by points on an elliptic curve P1

and P2, respectively, whose orders are a prime p, and GT be a cyclic multiplica-
tive group of order p. Suppose there is an isomorphism ψ : G2 → G1 such that
ψ(P2) = P1. Let e : G1 × G2 → GT be a bilinear pairing with the following
properties:

1. Bilinearity e(aP, bQ) = e(P,Q)ab for all P ∈ G1, Q ∈ G2, a, b ∈ Zr

2. Non-degeneracy e(P1, P2) 6= 1

5

CHAPTER 2. MATHEMATICAL BACKGROUND

3. Computability There is an efficient algorithm to compute e(P,Q) for all
P ∈ G1, Q ∈ G2.

For simplicity and better computability, we hereafter restrict ourselves to the
case G1 = G2 and P1 = P2. The implemented scheme can easily be modified for
an asymmetric pairing where G1 6= G2. For a group G of prime order let G∗
denote G∗ = G\{O} where O is the identity element of group G.

The group key generation algorithm generates the elliptic curve, the groups G1

and GT a generator P for group G1 and the bilinear pairing e.

To sign long messages to an arbitrary-sized bit string must be mapped to a given
fixed bit size. This can be established by collision resistant hash functions.

Definition 2.1.7. Hash Function
A hash function H is an efficiently evaluable mapping H:

H : {0, 1}∗ → {0, 1}n.

H maps arbitrary-sized messages to fixed-sized hash values. The integer n is
called the output length of H. The image H(X) of X is called the hash value of
X.

It should be very difficult to find two bit strings X1 and X2 which are mapped
to the same output value H(X).

For some proofs the definition of Turing machines is needed. A Turing machine
is an abstract computation model. The model was first introduced by Alan
Turing 1936. A standard Turing machine consists of a tape, a head, a state
register and an action table.

Definition 2.1.8. Turing Machine
Hopcroft and Ullman formally defined in 1979 [25] a (one-tape) Turing machine
as a 7 -tuple M = (Q,Γ, b,Σ, ρ, q0, F) where

� Q is a finite set of states

� Γ is a finite set of the tape alphabet

� b ∈ Γ is the blank symbol (the only symbol which can occur infinitely on a
tape)

� Σ ⊆ Γ \ {b} is the set of input symbols

� ρ : Q × Γ → Γ × Q × {L,R} is the transition function, where L is a left
shift, R is a right shift. If a k-tape Turing machine is defined, a third
state S for no shift is also needed.

� q0 ∈ Q is the initial state

6

2.1. NOTATION AND DEFINITIONS

� F ⊆ Q is the set of final states

A Turing machine is deterministic if the action table has no more than one entry
for a combination of symbol and state. There exist also non-deterministic ma-
chines which have more than one entry on the action table for one combination.

7

CHAPTER 2. MATHEMATICAL BACKGROUND

2.2 Elliptic Curves

This section deals with the differences between normal arithmetic functions and
their counterparts on elliptic curves. Mathematical functions like addition and
multiplication are defined differently in an elliptic curve group.
Through the equation y2 = x3 + ax + b, which is a simple description of an
elliptic curve, it is clear that every x coordinate has two y values, +y and −y.
Every element of the elliptic curve group E(Fpk) is represented by [x, y] with
x, y ∈ Fpk and satisfies the equation given above.
Also, the equation 22a3 + 33b2 must be unequal 0, so that a, b are suitable for
cryptographic purposes. As shown in Fig. 2.1, elliptic curves can have different
shapes. For all demonstrative purposes in this section the curve in the middle
of the figure, generated with the equation y2 = x3 − x+ 1, is taken.

Figure 2.1: Example elliptic curves

To be able to work with points on an elliptic curve, we must define the corre-
sponding group operations: point addition, point doubling and scalar multipli-
cation.
For demonstrative purposes we use figures to describe the operations in a graph-
ical way. All operations are applied to points on the elliptic curve, therefor a
curve is drawn in a two-dimensional coordinate system and the operations will
be executed exemplarily on this curve. The Weierstraß equation of the curve is
y2 = x3 − x+ 1.

Point Addition Let P1, P2 ∈ E(Fpk) be two distinct points on the elliptic
curve. The result of the addition Q = P1 +P2, where Q ∈ E(Fpk), is graphically
defined as follows: first draw a line through P1 and P2, when this line crosses
the elliptic curve again, the point Q

′
is found. The reflection over the x-axis of

Q
′

is the point Q and the sum of P1 + P2, see Figure 2.2.

Point Doubling Let P ∈ E(Fpk) be a point on the curve E. The result
when doubling this point Q = 2 · P, Q ∈ E(Fpk) can graphically be derived by

8

2.2. ELLIPTIC CURVES

Figure 2.2: Point addition on a elliptic curve

drawing a tangent line to the point P . The intersection of this line with the
elliptic curve produces Q

′
, reflected on the x-axis it yields the point Q. The

Figure 2.3 shows the process.

Figure 2.3: Point doubling on a elliptic curve

Definition 2.2.1. Group law [24]
The group law defines operations on points which lie on an elliptic curve satis-
fying the Weierstraß equation y2 = x3 + ax+ b and have char(Fpk) 6= 2, 3.

� Identity ∞ is also known as point at infinity. P + ∞ = ∞ + P =
P, ∀P ∈ E(Fpk).

� Negatives ∀P = (x, y) ∈ E(Fpk) ∃ − P = (x,−y) ∈ E(Fpk). The point
−P is called negative of P , note that (x, y) + (x,−y) =∞ and −∞ =∞.

9

CHAPTER 2. MATHEMATICAL BACKGROUND

� Point addition Let P1 = (x1, y1), P2 = (x2, y2) ∈ E(Fpk), where
P1 6= ±P2. Then P1 + P2 = Q, where Q = (x3, y3) ∈ E(Fpk) and

x3 = (
y2 − y1

x2 − x1
)2 − x1 − x2 mod r and

y3 = (
y2 − y1

x2 − x1
)(x1 − x3)− y1 mod r.

� Point doubling Let P = (x1, y1) ∈ E(Fpk), where P 6= −P . Then
2 · P = (x2, y2) ∈ E(Fpk), where

x2 = (
3x2

1 + a

2y1
)2 − 2x1 mod r and

y2 = (
3x2

1 + a

2y1
)(x1 − x2)y1 mod r.

When a point should be multiplied by an integer Q = n · P the program per-
forms n additions:

Q = P + P + . . .+ P︸ ︷︷ ︸
n times

.

10

2.3. ZERO-KNOWLEDGE PROTOCOLS

2.3 Zero-knowledge Protocols

Zero-knowledge protocols are an important role in this work. There are several
non-interactive zero-knowledge proofs of knowledge in the implemented scheme
of this thesis. The signature generation process is a slightly modified non-
interactive zero-knowledge protocol from [33].
Roughly speaking, the zero-knowledge property states that, in a protocol, one
party believes another that it has information about a secret without learning
anything about this secret through the protocol run.
A zero-knowledge proof is not only useful in cryptographic applications but also
in the field of mathematical proof systems. This thesis will focus on the cryp-
tographic aspects of zero-knowledge proof systems only.
Such a protocol must satisfy three properties:

1. Completeness If an honest prover knows the secret, he can convince an
honest verifier. Honest means that both parties are following the protocol
run properly.

2. Soundness A cheating prover, without knowing the secret, can convince
an honest verifier with a small and negligible probability only.

3. Zero-knowledge A cheating verifier cannot learn anything other from
the protocol run except that whether the prover knows the secret or not.

To clarify these properties a popular example is given.
One of the most popular zero-knowledge protocols is the Fiat-Shamir algorithm,
see [20]. The algorithm is built on the difficulty of computing square roots in Z∗n
when n is the product of two large primes n = p · q. Note that it is impossible
to compute a square root in Z∗n, if the factorization of n is not given.
The Fiat-Shamir algorithm consists of two phases, the key generation phase and
the application phase.
In the key generation phase, the prover randomly chooses two large primes p
and q and computes n = pq. Next, the verifier chooses a secret s ∈ Zn and
computes v = s2 mod n. Now the prover publishes n and v.
The aim of the application phase is that the prover convinces a verifier that
he knows s without revealing s. Therefore the protocol shown in Table 2.1 is
executed.

In a security proof, we must check the three properties.
Completeness If the prover knows the secret s, the verifier will be convinced
of this fact and the equation is true:

y2 ≡ (rsb)2 ≡ r2s2b ≡ r2vb ≡ xvb mod n.

Soundness A cheating prover can only send the right answers to one of the
challenges b = 0 or b = 1. If the prover could answer both requests (send either

11

CHAPTER 2. MATHEMATICAL BACKGROUND

Prover Verifier

choose random number r ∈ Zn
compute x = r2 mod n

x−−−−−−−−−−→
choose b ∈R {0, 1}

b←−−−−−−−−−−
y = rsb mod n

y−−−−−−−−−−→ check if y2 = xvb mod n

Table 2.1: Example of a Zero-knowledge Protocol

y0 or y1), he would already know a square root of v: through y2
0 = x and y2

1 = xv
the next equation follows: (y1y0)2 = v. Therefore (y1y0) is already a square root of
v modulo n. So the probability of a cheating prover is at most 1

2 .
On the other hand, the probability for the prover to cheat is at least 1

2 . If the
prover guesses at the beginning of the protocol which b the verifier will send,
he can prepare the x upfront. The prover computes x = r2v−b

′

mod n and sets
y = r. If the verifier sends b = b

′
, the prover can answer with y = r and the

verifier will not notice the difference.
This shows that the cheating probability for the prover is = 1

2 .
In the security proof the verifier is substituted by a so-called knowledge extrac-
tor, that can rewind the prover. The knowledge extractor stores y0 where b = 0
and then rewinds the prover and sends b = 1, now storing y1. Note that now the
extractor can compute the secret. So if the knowledge extractor can extract the
secret, the prover must posses the secret and therefore the soundness property
is proved.
After t protocol runs, the probability is (1

2)t that the prover is cheating, which
is negligible in practice.
Zero-knowledge To prove this property the prover is substituted by a so-called
simulator which does not know the secret s. If the recorded protocol run is not
distinguishable from a real protocol run, the zero-knowledge property is fulfilled.
The simulator first chooses a bit c ∈R {0, 1} and r ∈R Zn and computes
x = r2vc mod n. Now it sends x to the verifier and gets b back.
If b = c the simulator sends y = r and the protocol run will be recorded, else
the whole simulator and the verifier are reset and started again.
The so recorded simulated protocol runs contain the same random distribution
of (x, b, y) as the recorded normal protocol runs. Every tuple fulfills the equation
y2 = xvb, so the simulated protocol runs are indistinguishable from the normal
protocol runs. No one gets any information when observing the protocol or
acting as a verifier.

12

2.3. ZERO-KNOWLEDGE PROTOCOLS

2.3.1 Non-interactive Zero-knowledge Protocols

This work focuses on non-interactive zero-knowledge proofs to prove knowledge
of certain values. To transform a zero-knowledge proof into a non-interactive
protocol, the bit b is not chosen randomly but computed by a hash function.
The global parameters are n and v = s2 mod n. The protocol is now defined as
follows:

Prover n, v = s2 mod n Verifier

choose random number r ∈ Zn
compute x = r2 mod n

compute b = H(x | n | v)
y = rsb mod n

x,y−−−−−−−−−−→ compute b
′

= H(x | n | v)

check if y2 = xvb
′

mod n

Table 2.2: Example of a non-interactive Zero-knowledge Protocol

Due to the combination of x and n in the hash function, it is assured that the
prover cannot choose b arbitrarily. Security of this protocol now holds if we as-
sume the output of H to be truly random. We then prove security in a so-called
random oracle model.
To transform this non-interactive Zero-knowledge protocol into a signature al-
gorithm, the message m, which should be signed, must be included in the hash
function b = H(x | n | v | m).

13

CHAPTER 2. MATHEMATICAL BACKGROUND

2.4 Complexity Assumptions

Closely related to the discrete logarithm problem (DLP) is the Computational
Diffie-Hellman problem (CDH). Both state as follows.

Definition 2.4.1. Discrete Logarithm Problem (DLP)
Given a prime p, a generator g of Z∗p, and an element a ∈ Z∗p, find the integer
x, 0 ≤ x ≤ (p− 2), such that gx = a mod p.

The Discrete Logarithm assumption in G1 is as follows.

Definition 2.4.2. Discrete Logarithm assumption in G1 (DLG1)
Let G output descriptions of a bilinear group as defined in Definition 2.1.6 and
let Q be a random generator of G1. For every PPT algorithm A, the following
function AdvDLA (l) is negligible.

AdvDLA (l) = Pr[A(t, Q, xQ) = x]
where t = (p,G1,GT , e, P)← G(1l), Q← G1 and x← Z∗p.

Definition 2.4.3. Computational Diffie-Hellman problem (CDH)
Given a prime p, a generator g of Z∗p and gx, gy where x, y ∈ Z∗p, compute gxy.

The Decisional Diffie-Hellman (DDH) assumption holds in multiplicative groups.
It may also be true for many other cyclic groups of prime order, such as the
subgroup of order p of group Zp′ , where p, p

′
are large primes and p | p′ − 1.

Definition 2.4.4. Decisional Diffie-Hellman (DDH)
Let p be a prime and G = (Z/pZ) a cyclic group with order p. Let g be a
generator of G, so that every element in G can be written as a = gb mod p.
Given three elements x = gc mod p, y = gd mod p and z ∈ Z∗p, where c and d

are unknown, decide whether z = gcd mod p or not.
The DDH problem in bilinear groups is defined as follows. Again group G1

is an elliptic curve, GT is a multiplicative group and e defines a bilinear map
e : G1 ×G1 → GT .
For every PPT algorithm A, the following function AdvDDHA (l) is negligible.

AdvDDHA (l) =| Pr[A(t,Φ,Φr,Φx,Φrx) = 1]− Pr[A(t,Φ,Φr,Φx,Φs) = 1] |
where t = (p,G1,GT , e, P)← G(1l),Φ← G∗T and x, r, s← Z∗p.

The q-SDH definition was introduced by Boneh and Boyen in 2004 [10]. It states
that there is no PPT algorithm that can compute a pair (c, 1

s+cP) from a tuple
(P, sP, . . . , sqP), where c ∈ Zr and s ∈R Zp.

Definition 2.4.5. q-Strong Diffie-Hellman (q-SDH)
For every PPT algorithm A, the following function Advq−SDHA (l) is negligible.

14

2.4. COMPLEXITY ASSUMPTIONS

Advq−SDHA (l) = Pr[(A(t, sP, . . . , sqP) = (c, 1
s+cP)) ∧ (c ∈ Zp)]

where t = (p,G1,GT , e, P)← G(1l) and s← Zp.

In 2004, Boneh and Boyen [9] also presented the DBDH assumption, which in-
tuitively states that there exists no PPT algorithm that can distinguish between
a tuple (aP, bP, cP, e(P, P)abc) and a tuple (aP, bP, cP,Φ), where Φ ∈R G∗T and
a, b, c ∈R Z∗p.

Definition 2.4.6. Decisional Bilinear Diffie-Hellman (DBDH)
For every PPT algorithm A, the following function AdvDBDHA (l) is negligible.

AdvDBDHA (l) =| Pr[A(t, aP, bP, cP, e(P, P)abc) = 1]
−Pr[A(t, aP, bP, cP,Φ) = 1] |

where t = (p,G1,GT , e, P)← G(1l),Φ← G∗T and a, b, c← Z∗p.

Nguyen presented in [33] a decisional Diffie-Hellman variant assumption and
showed that it is weaker than a DBDH assumption. The following assumption is
very similar to the DDH assumption, but elements of multiplicative and additive
groups are included.

Definition 2.4.7. Decisional Diffie-Hellman Variant (DDHV)
For every PPT algorithm A, the following function AdvDDHVA (l) is negligible.

AdvDDHVA (l) =| Pr[A(t, P, rP, e(P, P)x, e(P, P)xr) = 1]
−Pr[A(t, P, rP, e(P, P)x, e(P, P)s] = 1] |

where t = (p,G1,GT , e, P)← G(1l) and x, r, s← Z∗p.

15

3 Authentication

Authentication is the process of verifying the identity of a person that is trying
to get access on some resources. Authentication identifies an individual and
refers to whether the source and contents of a message are what they claim to
be.
There are different kinds of authenticators. They can be divided into three
subgroups.

� The individual can be linked to confidential information that only he or
she is supposed to know, for example a password, private key or PIN.

� The individual can be associated with a unique logical device or logical
address, like a MAC address or a IMSI number on the SIM card of a
mobile phone.

� A unique attribute of the individual like the voice or fingerprint is used
for authentication.

In most private and public networks (including the Internet) authentication is
commonly performed by the use of passwords. The weakness of this authenti-
cation method is that passwords can be stolen, revealed, or forgotten. Due to
many different malicious threats, like viruses and phishing scams, the potential
to loose a password to an adversary increases.
To encounter this problem, other, more stringent methods are required. The
identification by the use of a unique logical device is problematic. First, we
must use a device everyone has got. Second, the unique information must be
transported secretly and without loss of integrity to the target authentication
service. There must also be a way to secure that the unique information cannot
be changed by an adversary.
A better way to authenticate an individual is the use of biometrics. The at-
tributes, like a palm print, cannot easily be imitated, but there must be a
physical device to gather this information from the user. Even if the physical
device is present, the attribute must be securely transported over a network.
If no devices are presented to gather biometric information or to provide a unique
identification, software can be used to accomplish security. The authenticity of
a message and the authentication of a user can be achieved by using digital sig-
natures and certificates. Although these procedures are not completely secure,
they provide flexibility, platform independence and a high security standards.
The cornerstone of most cryptosystems is authentication. Only if users can au-
thenticate themselves against a server, it will be able to provide trusted users

16

the correct values. Without authentication, other requirements like integrity or
confidentiality are no longer relevant.

Anonymity is another requirement in cryptographic systems. It comes into play
when the identity of individuals in a certain event should be kept secret. In a
wide range of applications this property is very desirable or needed, like voting
or anonymous donations.
The anonymity property critically depends on the position of the adversary.
For example, in case of an anonymous bulletin board, a posting by a member
is kept anonymous to the other members of the board. But it is possible that
the administrator of the board has some privileged information to identify the
member who posted the message.
Often, in practice, a user gets a unique identifier, called a pseudonym. With
this pseudonym a long-term relationship can be established with an entity. The
user is anonymous in respect of its identity to other users as long as they cannot
link the pseudonym to an identity.
Instead of giving each user full anonymity or pseudonymity, there is the concept
of anonymity with respect to a group. The identity of the user cannot be re-
vealed by anyone except a small group of trusted administrators, but everyone
can identify the group to which the user belongs to.
Almost every application which provide the anonymity property also needs au-
thorization. This ensures that only a certain group of users can use the ap-
plication and that the provider can seek a user if the anonymity was misused.
Most schemes only provide either anonymity or authentication. In this thesis
we implement a scheme that provide both security properties at the same time.

Most systems, which provide signer-anonymity, usually do not address mecha-
nisms that allow a dedicated third party to revoke the anonymity in cases of a
dispute. If the process of revoking should be successful, first of all the member
who sent the message must be traced. To establish traceability, the unique iden-
tifier of a member is encrypted and hidden in the signature. Therefore only an
administrator with privileged information can decrypt this piece of information
and can link an authorized identity to the anonymous signature.

17

CHAPTER 3. AUTHENTICATION

3.1 Digital Signature Schemes

A digital signature is the digital analogue of a handwritten signature. Infor-
mally, a digital signature is a bit string that connects a message to a public key
of the signer, so the receiver can believe that the message was really sent by
the signer. As long as the private key of the signer remains secret, the digital
signature provides non-repudiation, meaning that the signer cannot successfully
claim that he did not sign a message, when it can be verified with his public
key.
There are ambitions to use digital signatures in the public sector to replace the
handwritten signature and build up an online government agency. The potential
use of digital signatures is not exhausted yet.
The whole concept of digital signatures was put forth by Diffie and Hellman
their seminal paper [18], in 1976.

Definition 3.1.1. A digital signature scheme
A digital signature scheme is a triple of algorithms SIG = (KeyGen, Sign, Ver-
ify). The first and the second one are probabilistic, while the third one is deter-
ministic. The algorithm KeyGen generates a secret key xs and a corresponding
public key ys of a signer S on input of the system parameters. The algorithm
Sign takes xs and a message m as input and outputs a signature σ of m. On
input of a message m, a signature σ, and the public key ys of a signer, the
algorithm Verify outputs true or false. The following must be satisfied.

V erify(m,σ, ys) =

{
true if Prob σ = Sign(m,xs) > 0
false otherwise

Furthermore, a signature scheme must be unforgeable. This means that it must
be infeasible to compute a signature of a message with respect to a public key
without knowing the corresponding secret key.

The following standard definition is needed in security proofs of signature schemes.

Definition 3.1.2. Unforgeability against Chosen Message Attacks [11]
A signature scheme SIG = (KeyGen, Sign, Verify) is (t, q, ε)-existentially un-
forgeable against adaptive chosen message attacks, if any adversary with run-
time t wins in the following game with probability at most ε after issuing at most
q signing queries.

18

3.2. DIGITAL CERTIFICATES

1. Setup. The challenger first runs KeyGen that outputs a secret and a
public key. The public key is given to the adversary.

2. Signature Queries. The signature queries m0, . . . ,mq are sent from
the adversary to the challenger. The challenger computes for each query
mi a signature σi by calling the Sign functionality. Then each signa-
ture σi is sent to the adversary. These queries may be asked adap-
tively so that each query mi may depend on the replies of the queries
m0, . . . ,mi−1.

3. Output. Finally, the adversary computes a pair (m,σ) and publishes it.
The adversary wins if σ is a valid signature of the message m according
to the functionality Verify and (m,σ) is not among the pairs (mi, σi)
generated during the query phase.

3.2 Digital Certificates

In a digital certificate a trusted third party binds a user’s identity to his public
key. Technically, the trusted third party just signs the user’s public key together
with some identifying information. Digital certificates are useful for large scale
public key infrastructures (PKIs). They are one of the most common ways to
securely distribute public keys over a large and untrustworthy network. With
these public keys, it is possible to verify a digital signature.
So if Bob wants to send secret information to Alice, he can just download
Alice’s public key and encrypt the message. But in a large network Charlie
could also publish his key and claim that this key is the original key of Alice. If
Bob believes Charlie and uses Charlie’s public key, Charlie could intercept the
ciphertext, decrypt it and read the secret information. So Bob must be sure
that he gets the correct key. A way to accomplish this is to ask a trusted third
party, a certificate authority (CA). This CA will send Bob

� a public key,

� a name of the person or cooperation, belonging to the public key,

� an information about how long the certificate will be valid,

� a referrer (URL) to the location of a revoke list,

� and a digital signature of the all bullets above, signed with the CA’s
private key.

An example certificate is given in chapter 6.2.1.
If the CA is trusted, everyone will be sure that he is getting the correct public
key of a given entity. The CA’s public keys must be stored on Bob’s computer,
so that he can verify the certificate. Usually, public keys of CAs are distributed
by embedding them into web browsers. The resulting trust hierarchy is called

19

CHAPTER 3. AUTHENTICATION

public key infrastructure (PKI) and is described in Section 3.3.

Digital certificates are a way to transfer public keys over an untrusted network.
With these keys a digital signature can be verified or a message can be en-
crypted. An asymmetric encryption algorithm is used to accomplish this. To
proof the security of an asymmetric encryption algorithm, first a general en-
cryption scheme is defined below.

Definition 3.2.1. Encryption Scheme
A triple (KeyGen, Enc, Dec) is an encryption scheme, if KeyGen and Enc are
PPT algorithms and Dec is a deterministic polynomial-time algorithm which
satisfies the following conditions:

� On input 1n, algorithm KeyGen outputs a pair of bit strings.

� For every pair (e, d) in the range of KeyGen(1n), and for every m ∈
{0, 1}∗, algorithm Enc (called encryption) and Dec (called decryption) sat-
isfy:

Pr[m = m
′
;m
′ ← Decd(Ence(m))] = 1.

The security of an asymmetric algorithm can be described in the following def-
inition.

Definition 3.2.2. Indistinguishability under chosen-plaintext attack (IND-CPA)

For an asymmetric key encryption algorithm, this definition is formalized by a
game between an adversary and a challenger.
The adversary is a probabilistic polynomial time Turing machine, so the compu-
tation must be complete in a polynomial number of time steps. In the following
game, Epk(m) represents the encryption of m under the public key pk.

1. The challenger generates a public key pk and a secret key sk. The input
of the generation function is a security parameter l. The public key is
sent to the adversary.

2. The adversary can make any number of encryption with pk or execute
any number of other operations.

3. Now the adversary sends two distinct plaintexts m0,m1 to the chal-
lenger.

4. A bit b ∈R {0, 1} is chosen randomly by the challenger and the challenge
c = Epk(mb) is sent to the adversary.

5. The adversary can perform any number of computations or encryptions.
Finally it outputs a guess for b.

20

3.3. PUBLIC KEY INFRASTRUCTURES

An encryption algorithm is indistinguishable under chosen-plaintext attack if
a probabilistic polynomial time adversary has only a negligible advantage over
guessing b randomly. A negligible advantage is a win probability for the adver-
sary of 1

2 + ε(l), where ∃ l0 : ε(l) < 1
poly(l) ∀ l > l0.

Although the adversary can compute c0 = Epk(m0) and c1 = Epk(m1) and can
compare both with c, due to the probabilistic nature of E, this does not increase
the advantage of the adversary.

3.3 Public Key Infrastructures

A digital certificate is a digital signature, issued by an entity or authority, stating
that a public key belongs to a specific entity. So Alice can trust a certificate
issued by an authority X for user Bob if and only if the following conditions are
met:

� Alice possess the public key of X and knows that it is authentic.

� Alice trusts X to be honest and to sign only authenticated public keys.

In case Alice does not possess an authentic copy of the public key of X, the
first condition can be satisfied by using a certificate of X’s public key issued
by another authority Y . This process can be iterated, generating a chain of
certificates. These chains of certificates establish a public key infrastructure.
A PKI usually combines the functions issue, revoke, store and retrieve of digital
certificate. There are four entities in the infrastructure:

� Certification Authority: root of the infrastructure

� Registration Authority: an optional system for certain management func-
tions

� End Entity: end user systems that use a certificate

� Database: a system that stores certificates and certificate revoke lists
(CRLs)

3.3.1 Drawbacks of PKIs

A big drawback of public key infrastructures and digital certificates is the revo-
cation mechanism of members. It is very easy to add a new member to a group.
The new user just gets a new certificate. A group is, in this case, defined as all
certificates which are signed by a so called root certificate. Root certificates are
owned by a trusted third party like an authentication service or a CA. A very
popular one is VeriSign [38].
To remove a member, his certificate is stored in the CRL (Certificate Revoke
List). So basically, each time a user is connecting to a web site and receiving a

21

CHAPTER 3. AUTHENTICATION

digital certificate, he must also connect to the authentication service and down-
load the newest CRL to be sure that the certificate of the web site has not been
revoked.
Few software implementations for digital certificates provide this functionality.
A drawback of CRLs is the dependency on the number of users revoked, because
each revoked certificate creates another entry in this list. Current systems use
a workaround solution, the restriction of the validation time. The maximum
validation time of certificates is usually one to three years from the day of pur-
chase. If the authentication service wants to revoke a user, no more certificates
will be sold to him when his certificates have expired.

3.4 Group Signatures Schemes

Today, it is easy to provide confidential communication in large networks (e.g.
using the TLS/SSL protocol suite that is implemented in standard browsers),
but without signer-anonymity an adversary may construct a web profile for
users. For example, if a user makes a medical statement in an online forum and
claims he is a doctor, using a digital signature, everyone could discover who is
behind the statement. Only a scheme with sender-anonymity can be used to
protect the identity of a person. And the traceability requirement can deter a
user from abusing the given anonymity. These security requirements can con-
currently be accomplished with a group signature scheme.
A group signature scheme is a special signature scheme. A member of a group
can anonymously sign a message on behalf of the group. This idea was first
published by Chaum and van Heyst [15] in 1991.
A group signature, just as any other digital signature scheme, lets the signer
demonstrate some secret knowledge in respect of a certain document. It is
possible for everyone to verify a given group signature. Unlike other signa-
ture schemes no one, with the exception of a dedicated group administrator,
can reveal the identity of the signer. Furthermore it is impossible to decide
whether two signatures originate from the same user. The corresponding prop-
erty is called unlinkability and can be understood as a very strong notion of
sender-anonymity. While the group administrator is able to open a signature
and identify the signer, it is not possible for anyone, including the group ad-
ministrator, to impersonate another group member.
Formally, a group signature scheme must have the following three properties:

1. only members of the group can sign messages;

2. the receiver of the signature can verify that it is a valid signature of that
group, but cannot discover which member of the group made it;

3. in case of dispute the group manager can “open” the signature to reveal
the identity of the signer.

22

3.4. GROUP SIGNATURES SCHEMES

This makes group signatures an interesting building block for e-voting applica-
tions.
The group manager or administrator is essential for the group signature scheme
because he is the only one who can add or delete members to/from the group
and revoke the anonymity of members. So basically, everyone in the group must
trust the group administrators.

3.4.1 Formal Definition of Group Signatures

Jan Camenisch [13], [2] defined a generalized concept of group signatures. Typ-
ically these schemes are defined as follows.

Definition 3.4.1. Group signatures
A group signature scheme is a digital signature scheme comprised of the follow-
ing procedures:

� Setup: A probabilistic algorithm which outputs the initial public group key
γ and the secret group administrator keys ik and ok after the input of the
security parameter l.

� Join: An interactive protocol between the group administrator, who takes
the secret key ik as input, and a user that results in the user becoming a
new group member. The new member gets a membership secret xi and a
membership certificate.

� Sign: A probabilistic algorithm that takes as input the group public key γ,
a membership certificate, a membership secret xi, and a message m and
outputs a group signature s of m.

� Verify: An algorithm which tests an alleged group signature s of a mes-
sage m with respect to a group public key γ.

� Open: An algorithm which outputs the identity of the signer and a proof
of this claim after the input of a message m, a valid signature s on this
message, a group public key γ, and the secret group administrator key ok.

A group signature scheme must satisfy the following properties:

� Correctness: Signatures produced by a valid group member with Sign must
be accepted by Verify.

� Anonymity: Given a valid signature s of some message m, identifying the
original signer is computationally hard for everyone but the group admin-
istrator, the “opener”.

� Traceability: The group administrator is always able to open a valid sig-
nature and identify the actual signer. Therefor, any colluding subsets of
group members cannot generate a valid signature that the “opener” cannot
link to one specific group member of that subset.

23

CHAPTER 3. AUTHENTICATION

� Non-frameability: No one can produce a valid signature s to a message m,
which opens to a group member, who did not sign m.

Most group signature schemes, like [4], do not need a revoke algorithm because
they do not explicitly support dynamic groups. This means that the group size
and therefor the maximum number of members is static and cannot be changed
later. All membership certificates are generated in the Setup algorithm and
are only given to the user in the Join protocol.
In a fully dynamic group the number of members who can join the group is
not restricted. There is also a way to revoke members from the group. This
is an important when group members misuse the anonymity guaranteed by the
system, for example by signing illegal contents. So in a fully dynamic group, as
assumed in this thesis, we need an additional algorithm Revoke.

Definition 3.4.2. Revoke algorithm
This algorithm removes a member from the group.

� Revoke: An algorithm which removes a member from the group. The
input is a group public key γ and the secret group administrator key ik.
The output is a new group public key.

Another serious problem is a dishonest group administrator. The first group
signature schemes, like [15], only have one group administrator, who has got
the opening key ok and the issuing key ik. So one entity alone can issue new
members and can revoke the anonymity property. A solution to this problem
is the splitting of these administrative functions onto different management
entities in the group. Should the opener be dishonest, he could falsely accuse an
arbitrary user to have signed a specific message or could claim that a signature
cannot be opened to protected a user. A solution to the dishonest opener
problem is the Judge algorithm. The opener must produce a proof of his claim
which can be verified by any user using the Judge procedure.

Definition 3.4.3. Judge algorithm
This algorithm is used to verify a proof produced by an opener.

� Judge: A probabilistic algorithm that on input a group public key γ and
a proof from the Open algorithm verifies this proof.

If the issuer is dishonest, he could use the membership secret xi and the mem-
bership certificate to impersonate this member. To prevent this attack, only the
member must know the value xi. A possible solution is the use of an according
zero-knowledge protocol, such that the group administrator is convinced that
the member has chosen a valid xi but does not know the exact value.
Additionally, “long-term credentials”, as stated by [2], are necessary to protect
group members from being framed by a corrupt issuer. This can be established
by using an independent PKI and certificates for every member. Consequently
each member and potential member has a certified public key and a matching
private key that is kept secret. In combination a PKI is used for authentication,

24

3.4. GROUP SIGNATURES SCHEMES

and the group signature scheme provides anonymous and traceable authentica-
tion at the group level.

3.4.2 Overview of the Presented Group Signature Scheme

Our new scheme which is presented in detail in the next chapters, combines
a PKI and a group signature scheme. This combination has advantages over
many other schemes.
Apart from the security requirements which the scheme provides, the signature
size is approximately as large as the size of a standard signature, for more de-
tails see Appendix B.
With this new scheme it is also possible to distribute a large number, e.g. thou-
sands, of keys to members, so that members can sign information in behalf of
the group. Distribution and administration of so many users is not always pos-
sible in every software implementation of signature algorithms.
In a larger network, it is also possible to use tree structures for the servers. Such
an infrastructure can decrease the latency time, and different subgroups could
split up to form a new group with an accumulator. For example, if in a cor-
poration every department has its own server for accumulator updates and join
requests, a department can be detached and can get its own accumulator value.
With such a structure, problems like certificate revoke lists, see drawbacks of
PKIs 3.3.1, are not given in this scheme. Also, nearly no operation depends on
the number of members or the number of revoked members. This advantage
is not given in most other signature schemes. The use of validation times is
no longer necessary because there are procedures which provide an easy way to
immediately revoke members.
Finally, the presented scheme is provably secure. The main signature protocol
and also the underlying zero-knowledge protocols are secure and the related
security proofs are given in this document.

3.4.3 Security Requirements

The security requirements are based on models, which were first presented by
Bellare, Shi and Zhang [6]. There are four security requirements: correctness,
anonymity, traceability and non-frameability.
To prove the presented scheme secure with respect to these requirements, we
will present several experiments in which the adversary has access to specific
oracles. The specific description of the algorithms mentioned below is given in
5. We first introduce these oracles.

� AddU(·) The add user oracle takes as input an integer i ∈ N. An adver-
sary can add i to the honest user group. The oracle generates a new PKI
certificate and executes the Join protocol, on behalf of i and the issuer.

25

CHAPTER 3. AUTHENTICATION

This oracle simulates the entire User PKI certificate generation and
the Join protocol. If the issuer accepts the protocol run, i will be added
to the database. If the prospective member also accepts, its final state
will be recorded as the group secret key gsk[i] and the witness w[i]. The
adversary only knows the public key of the PKI certificate, but not the
transcript generated by the oracle.

� CrptU(·,·) By calling the corrupt user oracle with the arguments i ∈ N
and a public key of a PKI certificate chosen by the adversary, the adversary
can corrupt a user i. Note that the user i is not a member of the group
yet. The oracle initializes the issuer to be ready to participate in a Join
protocol with i.

� SndToI(·,·) Having corrupted user i, the adversary can now use the send
to issuer oracle to engage in the Join protocol with an honest issuer.
The adversary must not necessarily execute the described Join protocol,
it can provide the oracle with i and a message Min which will be sent
to the issuer from the user i, instead of the normal Join protocol. The
issuer is managed by the oracle, which computes a response using the Join
protocol and returns the outgoing message to the adversary. At last, the
oracle updates the database if the issuer accepted the protocol run.

� SndToU(·,·) There are some cases in which the issuer could be corrupted.
To simulate this situation, the send to user oracle can be used by the ad-
versary, to engage in the Join protocol with an honest user as a corrupted
issuer. The adversary gives to the oracle i and Min, the message to be sent
to user i. The oracle manages the honest user and computes a response
using the Join protocol. After the simulated protocol run, the oracle will
return the outgoing messages to the adversary and will set the user’s group
secret key gsk[i] and witness w[i], if the user accepted the protocol run.

� USK(·) The adversary can call the user secret keys oracle with i ∈ N to
get both the user’s group secret key gsk[i] and the user’s private key of
the PKI certificate.

� RReg(·) The adversary can read the contents of the registration database
at position i with the read registration oracle.

� WReg(·) There are some definitions in which the adversary can alter the
registration database at position i by calling the write registration oracle.

� GSig(·,·) The signing oracle can be used to make a user i sign a message
m and send it to the adversary, as long as i is an honest user.

� Ch(b,·,·,·) A challenge oracle allows an adversary to attack anonymity.
It depends on a challenge bit b set by the overlying experiment. The
adversary provides a pair of identities i0, i1 and a message m, and obtains
a signature of m under the private key of ib, as long as the users i0, i1 are
honest users.

26

3.4. GROUP SIGNATURES SCHEMES

� RevokeU(·) The revoke user oracle lets the adversary remove user i from
the group.

� Witness(·) The witness oracle returns the witness of a user i.

The following security requirements are modeled with the defined oracles.

� Correctness This requirement ensures that the signature scheme will out-
put the correct values if all parties in the scheme are honest. The following
conditions must be fulfilled: the signature should be valid; the Open algo-
rithm, given the correct message and signature, should identify the signer;
and the Judge algorithm should accept the proof returned from the Open
algorithm. These terms must hold for all honest users and for any variant
they were added or deleted to/from the group.
The adversary has access to the AddU(·) and RReg(·) oracles. The
adversary creates an honest group member who signs a message. The
correctness condition holds if none of the following steps fail: an hon-
est verifier accepts the signature; the Open algorithm returns a correct
group member; and the Judge algorithm accepts the proof returned by
the Open algorithm. Note that the adversary is computationally not
bounded.

� Anonymity In this experiment the adversary is polynomial time (PT)
restricted. The adversary knows the issuing key (s, k) and has access
to the Ch(b,·,·,·), SndToI(·,·), SndToU(·,·), CrptU(·,·), WReg(·),
RevokeU(·), USK(·) and Witness(·) oracles. Formally, the anonymity
condition holds if the probability that the adversary can correctly guess
the bit b after an oracle call Ch(b,·,·,·) is negligible. The adversary does
not have to recover the identity of the signer of a signature, but needs to
distinguish which one of two signers signed a target message of the adver-
sary’s choice.
The adversary is provided with extremely strong attack capabilities, but
notice that the adversary must not send queried identities i0, i1 to the
RevokeU(·) oracle, and that the opener is uncorrupted.

� Traceability In this experiment the adversary must be unable to produce a
signature which an honest opener cannot link to a member of the group, or
an honest opener believes to have found the right member of the group but
cannot produce a proof for this claim. In this experiment, the adversary
has access to the AddU(·), RReg(·), SndToI(·,·), USK(·), CrptU(·,·),
RevokeU(·) and Witness(·) oracles and knows the opening key x

′
. The

adversary is PT restricted.
Some capabilities are denied to the adversary. It cannot corrupt the is-
suer and the opener can only be partially corrupted, this means that the
adversary knows x

′
but the opener operates correctly.

� Non-frameability The adversary tries to output a message, a signature,
an identity and an opening proof. The adversary wins if the signature is

27

CHAPTER 3. AUTHENTICATION

valid for the specific message, the identity is the identity of an honest user
i and the judge accepts the opening proof and believes that the honest
user i has signed the message.
The adversary can call the SndToU(·,·), WReg(·), USK(·), CrptU(·,·),
RevokeU(·) and Witness(·) oracles and knows the opening key x

′
and

the issuing key (s, k). The adversary is PT restricted.
Notice that the adversary cannot use USK(·) to obtain the signing key
of the user i.

The security proof of our scheme is given in 5.12.

28

4 Dynamic Cryptographic
Accumulators

In this chapter we introduce dynamic cryptographic accumulators. Thereby we
closely relate to the work of Fazio and Nicolosi [19].
The concept of accumulators was first introduced by Benaloh and de Mare [7]
in 1993. It was proposed as a decentralized alternative to public key infra-
structures in the design of secure distributed protocols. In this paper the basic
functionalities and security properties of dynamic cryptographic accumulators
are described.
Basically, an accumulator combines a large set of values into one short accumu-
lator value. Each member of a group can be mapped to one value in the set of
the accumulator group and it is possible to use a short witness value to prove
that a specific member is indeed included in the accumulator group.
In 2002 Camenisch and Lysyanskaya [14] introduced the more demanding no-
tion of dynamic accumulators, which enables the dynamic deletion and addition
of members from/to the group. This proposed scheme achieves a much higher
degree of flexibility, because the deletion and addition functionalities are inde-
pendent of the number of values in the accumulator and every member is able
to update old witnesses. This update can be accomplished without knowing
sensitive information, like group administrator keys.
In the same paper [14], Camenisch and Lysyanskaya showed that dynamic ac-
cumulators can be used in group signature schemes to apply membership re-
vocation. Also, ID escrow schemes and anonymous credential systems can be
expanded with dynamic accumulators to provide membership revocation.
A group signature scheme, see Section 3.4 for more details, allows a member of
a group to prove his membership without revealing his identity. To discourage
abuse, the group administrator can still discover the identity. As see in Sec-
tion 5.6.3, the protocol reveals no information about the identity of the group
member to anyone except a group administrator, the opener, who can open the
protocol transcript with some trapdoor information.
Was there no way to uncover the identity of a member, clearly nothing would
prevent a user from misusing the anonymity. So this scheme can only be success-
ful if there is an efficient way to identify and revoke a given member. Therefore
the member must be traceable and removable from the group. It must be en-
sured that these actions are only available for group administrators. Using a
dynamic accumulator scheme, revoking a member is as simple as deleting a value
from the accumulator.
To prevent users from gathering together to gain extra information, the group

29

CHAPTER 4. DYNAMIC CRYPTOGRAPHIC
ACCUMULATORS

manager must ensure that there is some randomness in the user’s secret key
xi. This must be done in a secure way to guarantee that the group manager
learns nothing about the user’s secret key. This assures that the group manager
cannot misuse xi to impersonate himself as the user at another authority. All
this properties must be fulfilled by the join protocol.
A user who has obtained membership in a group can prove this membership
via a zero-knowledge proof of knowledge of the hashed message, a part of his
secret key and a witness for the current accumulator. For traceability, the proof
also includes an encryption of a part of the user’s secret key, so that a group
administrator, the so called opener of the group, can decrypt this part and iden-
tify the member. This is accomplished by linking a decrypted value to a digital
certificate, which is created and monitored by a PKI.
In a dynamic accumulator scheme, as presented by Camenisch and Lysyanskaya
[14] as an enhancement of [2], the user must also prove that his membership
certificate is valid. Therefore the proof of knowledge is extended, so that the
user shows that he knows a witness for his identification value and combines
this information with the current accumulator. If a group administrator deletes
this user from the group and updates the accumulator accordingly, the verifier
would correctly reject the proof of the user. For this propose the verifier must
make sure that he is using the correct current value of the accumulator.
As described above the dynamic cryptographic accumulator is a very efficient
way to construct a group signature scheme and to allow revocation in an anony-
mous fashion. Revocation becomes a very efficient operation by only deleting
one value in the accumulator.

4.1 Definitions of Cryptographic Accumulators

A general definition of accumulators was given by Camenisch and Lysyanskaya
[14]. This definition of a secure accumulator is given below.

Definition 4.1.1. Secure Accumulator
A secure accumulator for a family of inputs {Xk} is a family of families of
functions G = {Fk} with the following properties:

� Efficient generation: There is an efficient probabilistic algorithm G that
on input 1k produces a random element f of Fk. Moreover, along with f ,
G also outputs some auxiliary information about f , denoted auxf .

� Efficient evaluation: f ∈ Fk is a polynomial-size circuit that, on input
(u, x) ∈ Uf × Xk, outputs a value v ∈ Uf , where Uf is an efficiently-
samplable input domain for the function f ; and Xk is the intended input
domain whose elements are to be accumulated.

� Quasi-commutative: For all k, for all f ∈ Fk, for all u ∈ Uf , for all

30

4.1. DEFINITIONS OF CRYPTOGRAPHIC ACCUMULATORS

x1, x2 ∈ Xk, f(f(u, x1), x2) = f(f(u, x2), x1). If X = {x1, . . . , xn} ⊂ Xk,
then by f(u,X) we denote f(f(. . . (u, x1), . . .), xn).

� Witnesses: Let v ∈ Uf and x ∈ Xk. A value w ∈ Uf is called a witness
for x in v under f if v = f(w, x).

� Security: Let U ′f × X
′

k denote the domains for which the computational
procedure for function f ∈ Fk is defined (thus Uf ⊆ U

′

f ,Xk ⊆ X
′

k). For all
probabilistic polynomial-time adversaries Ak,

Pr[f ← G(1k);u← Uf ; (x,w,X)← Ak(f,Uf , u) :
X ⊂ Xk;w ∈ U ′f ;x ∈ X ′k;x /∈ X; f(w, x) = f(u,X)] = neg(k);

Note that only the legitimate accumulated values, (x1, . . . , xn), must belong
to Xk; the forged value x can belong to a possibly larger set X ′k.

When Benaloh and de Mare [7] first proposed accumulators, they defined them
as one-way hash functions.
From the Definition 2.1.7 and the definition for quasi-commutativeness above
we can deduce the concept of one-way accumulators.

Definition 4.1.2. One-Way Accumulators
A family of one-way accumulators is a family of one-way hash functions, each
of which is quasi-commutative.

This definition does not guarantee security in a scenario where an adversary A
actively participates in the group and the values x and w are not random but
chosen by the adversary. To encounter this problem, Barić and Pfitzmann [3]
proposed the notion of collision-free accumulators:

Definition 4.1.3. Accumulator Scheme
An accumulator scheme is a 4 -tuple of polynomial time algorithms (Gen, Eval,
Wit, Ver), where:

� Gen, the key generation algorithm, is a probabilistic algorithm used to set
up the parameters of the accumulator. Gen takes a security parameter
1k and an accumulation threshold N (i.e. an upper bound on the total
number of values that can be securely accumulated) as input and returns
an accumulator key pk from an appropriate key space Kk,N ;

� Eval, the evaluation algorithm, is a probabilistic algorithm used to accu-
mulate a set X .= {x1, . . . , xN ′} of N

′ ≤ N elements from an efficiently-
samplable domain Xpk

, where pk is some accumulator key from Kk,N .
Eval receives as input (pk, x1, . . . , xN ′) and returns an accumulated value
(or accumulator) v ∈ Zpk

and some auxiliary information aux, which will
be used by other algorithms. Notice that every execution of Eval on the
same input (pk, x1, . . . , xN ′) must yield the same accumulated value v,
whereas the auxiliary information aux can differ;

31

CHAPTER 4. DYNAMIC CRYPTOGRAPHIC
ACCUMULATORS

� Wit, the witness extraction algorithm, is a probabilistic algorithm that
takes as input an accumulator key pk ∈ Kk,N , a value xi ∈ Xpk

and the
auxiliary information aux previously outputted (along with the accumu-
lator v) by Eval(pk, x1, . . . , xN ′), and returns either a witness wi (from
an efficiently-samplable witness space Wpk

) that proves that xi was ac-
cumulated within v if this is indeed the case, or the special symbol ⊥ if
xi /∈ {x1, . . . , xN ′}.

� Ver the verification algorithm, is a deterministic algorithm that, on input
(pk, xi, wi, v), returns a Yes/No answer according to whether the witness
wi constitutes a valid proof that xi has been accumulated within v or not.

As a short example the accumulator scheme proposed in [7] is described. A
function hk from the family Hλ of hash functions is randomly selected which
suits the appropriate security values. This function along with a x ∈R Xk is
the key generation algorithm. To accumulate values x1, . . . , xN ∈ Xk into the
accumulator v the operation vi ← hk(vi−1, xi) is executed.
To verify a given witness wi and xi, the verifier must check if hk(wi, xi) = v.
This shows that the resulting scheme is correct.

4.2 Definition of Dynamic Cryptographic Accu-
mulators

For many cryptographic applications it is necessary to be able to delete values
from the accumulator. The only way to accomplish this task in a static accu-
mulator scheme is to recompute all values. As a solution of this problem, the
dynamic accumulator scheme was introduced by Camenisch and Lysyanskaya
[14].
A secure accumulator, according to Definition 4.1.1, is called dynamic if the
following definition is fulfilled.

Definition 4.2.1. Secure Dynamic Accumulator

� Efficient deletion: there exists efficient algorithms D,W such that, if
v = f(u,X), x, x

′ ∈ X, and f(w, x) = v, then D(auxf , v, x
′
) = v

′
such

that v
′

= f(u,X\{x′}); and W (f, v, v
′
, x, x

′
) = w

′
such that f(w

′
, x) = v

′
.

A secure dynamic accumulator can also be defined as a scheme.

Definition 4.2.2. Dynamic Accumulator Scheme
A dynamic accumulator scheme is a 7 -tuple of polynomial time algorithms
(Gen, Eval, Wit, Ver, Add, Del, Upd), where:

32

4.2. DEFINITION OF DYNAMIC CRYPTOGRAPHIC ACCUMULATORS

� Gen, Eval, Wit, Ver are defined in the accumulator scheme above 4.1.3;

� Add, the element addition algorithm, is a deterministic algorithm that
given an accumulator key pk, a value v ∈ Zpk

obtained as the accumulation
of some set X of less than N elements of Xpk

, and another element x
′ ∈

Xpk
, returns a new accumulator v

′
corresponding to the set X ∈ {x′},

along with a witness w
′ ∈Wk for x

′
and some update information auxAdd

which will be used by the Upd algorithm;

� Del, the element deletion algorithm, is a deterministic algorithm that
given an accumulator key pk, a value v ∈ Zk obtained as the accumu-
lation of some set X of elements of Xpk

, and an element x
′ ∈ X, returns

a new accumulator v
′

corresponding to the set X \ {x′}, along with some
update information auxDel which will be used by the Upd algorithm;

� Upd, the witness update algorithm, is a deterministic algorithm used to
update the witness w ∈ Wk for an element x ∈ Xpk

previously accumu-
lated within an accumulator v ∈ Zk, after the addition (or deletion) of
an element x

′ ∈ Xpk
\ {x} in v. Upd takes as input (pk, x, w, b, auxop)

(where op is either Add or Del), and returns an updated witness w
′

that
proves the presence of x within the updated accumulator v

′
.

This scheme does not need a trusted authority. The drawback is that everyone
is able to delete or add new values from/to the accumulator. To avoid this the
accumulator manager executes the Gen algorithm and keeps a secret trapdoor
information tk (which is unique for the accumulator key pk). It can be used to
enable the accumulator manager to delete and/or add new values from/to the
accumulator.
Camenisch and Lysyanskaya [14] formalized a security definition for a secure dy-
namic accumulator. It states, that the dynamic accumulator is secure against
an adaptive adversary in the following scenario: The group administrator sets
up the function f and the value u and the trapdoor information auxf stays se-
cret. The adversary modifies the table X adaptively. When a value x is added
or deleted, the group administrator updates the table X accordingly. Finally
the adversary attempts to output a witness that x

′
/∈ X is in the current accu-

mulator v.

Definition 4.2.3. Let G be a dynamic accumulator algorithm. Let M be an in-
teractive Turing machine set up as follows: It receives input (f, auxf , u), where
f ∈ Fk and u ∈ Uf . It maintains a list of values X which is initially empty, and
the current accumulator value v, which is initially u. It responds to two types
of messages: in response to the (“ADD”, x) message, it checks that x ∈ Xk,
and if so, adds x to the list X and modifies v by evaluating f , it then sends
back this updated value; similarly, in response to the (“DEL”, x) message, it
checks that x ∈ X, and if so, deletes it from the list and updates v by running
D and sends back the updated value. In the end of the computation, M outputs

33

CHAPTER 4. DYNAMIC CRYPTOGRAPHIC
ACCUMULATORS

the current values for X and v. Let U ′f × X
′

k denote the domains for which the
computational procedure for function f ∈ Fk is defined. For all probabilistic
polynomial-time adversaries Ak,

Pr[((f, auxf)← G(1k);u← Uf ; (x
′
, w)← Ak(f, Uf , u)↔M(f, auxf , u)→ (X, v) :

w ∈ U ′f ;x
′ ∈ X ′k;x

′
/∈ X; f(w, x

′
) = f(u,X)] = neg(k).

34

5 Dynamic Accumulator Scheme
from Bilinear Pairings

This proposed group signature scheme is based on an identity escrow scheme
with membership revocation. It uses elliptic curves and bilinear pairings and
combines several cryptographic techniques. The model which is constructed and
later implemented, is derived from the work of Nguyen [33]. Unlike Nguyen’s
scheme the presented scheme does not need to update the accumulator after a
new member has joined the group. The group manager must only refresh the
accumulator value when a member is revoked.
The security of this scheme is based on the q-Strong Diffie-Hellman (q-SDH)
assumption, see Definition 2.4.5. This definition was strengthened by Boneh and
Boyen [10] from a weaker definition proposed by Mitsunari, Sakai and Kasahara
[30].
To implement this model, at least one trusted party is needed. This trusted
party can be split into two group administrators, the issuer and the opener.
Each user i ∈ N who joins the group has a unique identity. First this identity
is represented as a PKI certificate and after the join protocol as ai ∈ Zr. Due
to the use of dynamic cryptographic accumulators, membership revocation can
easily be achieved.

5.1 Features of the Scheme

In this section we highlight some important features the scheme provides.

� Two authorities. As suggested in previous works, we separate the au-
thority into two entities, the issuer and the opener. Each has its own
key. The issuer can add (with the Join protocol) and delete (with the
Revoke algorithm) members to/from the group. The opener can identify
the signer of a signature and produce a proof of this claim. This model
provides more security (compared to a single authority) in the face of the
possibility that authorities can be dishonest.

� Three key requirements. We verify that all defined key requirements,
namely anonymity, traceability and non-fameability, are fulfilled. It is
taken for granted, that the correctness requirement is verified as well.

� PKI. We assure that each group member or potential group member is in
possession of a digital certificate issued by a trusted PKI. So each member

35

CHAPTER 5. DYNAMIC ACCUMULATOR SCHEME FROM BILINEAR
PAIRINGS

has a personal public key, which is certified, and a matching private key,
which is kept secret. This is necessary to protect members from framing
attacks by a dishonest issuer and to trace them in case of a dispute. The
issuing of certificates for potential group members is carried out in the
User PKI Certificate Generation algorithm.

� Public verifiable proofs of opening. If the opener is dishonest the
produced results from the Open algorithm may accuse innocent members.
In order to protect them, the opener must produce a public verifiable proof
to any claim, proving that an identity generated a particular signature.

� Public table for witness updates. Each member keeps a membership
secret key and a membership witness. The membership witness proves
that a certain value ai, associated with the member, is accumulated in the
accumulator value. When a member is revoked by the issuer, members
must update their witness. The Update Witness algorithm uses the
public table “accu” to update the membership witness.

5.2 Overview of the Scheme

The described scheme is a tuple DCA = (Group Key Generation, User
PKI Generation, Join protocol, Signature protocol, Update Witness
algorithm, Update Accumulator algorithm, Open algorithm, Judge
algorithm, Revoke algorithm) of PT algorithms.

� Group key generation generates the public parameters and the secret
keys.

� User PKI generation outputs a digital certificate for a prospective mem-
ber, which is embedded in a PKI.

� Join protocol lets a user, in possession of a certificate, join the group
and transfers a membership secret key and a membership witness.

� Signature protocol = (Sign, Verify) allows a group member to sign
a message and to anonymously prove his membership in the group.

� Update witness algorithm updates the witness of a member.

� Update accumulator transfers the current accumulator value to any
user.

� Open algorithm can only be executed as a group administrator and
destroys the anonymity on a given signature.

� Judge algorithm checks if the proof outputted by the Open algorithm
is correct.

� Revoke algorithm can revoke a member if he has violated the policy.

36

5.2. OVERVIEW OF THE SCHEME

The security requirements are explained in Section 3.4.3 and verified in Section
5.12.
In this section, an overview of the scheme with a chronology of a typical mem-
bership cycle is given. First, a group is created and a user retrieves an SSL
certificate, which is maintained by the PKI. With this certificate the join pro-
tocol is secured and the user, in the following examples named Alice, joins the
group. After joining the group, Alice updates her witness to be ready to sign
a message. The verifier Bob also updates his local accumulator value, so he
can later verify a given signature. In the next step the signature protocol is
executed.
When a signature that Alice has created arouses suspicion, Bob is able to send
the signature to the opener. The opener opens the signature according to some
security policy and also produces a proof. Everyone can verify this proof by
calling the judge algorithm. After the opening of the signature, the identified
member ID can be used by the issuer to revoke this member.
As mentioned above, both administrative operations should be lying in the
hands of different entities. This whole process is illustrated in the figure 5.2.

In the following sections we use the symbols of Figure 5.1 to present an overview
of the relevant functions.

Figure 5.1: Illustration of the different use symbols

37

CHAPTER 5. DYNAMIC ACCUMULATOR SCHEME FROM BILINEAR
PAIRINGS

Figure 5.2: Illustration of a chronology overview of the scheme
38

5.3. GROUP KEY GENERATION

5.3 Group Key Generation

Figure 5.3: Illustration of the group key generation

Inputs:

� r bit: bit length of the group order

� q bit: bit length of the order of the base field

Outputs:

� Groups : all parameters of the groups Zp, G1, GT and pairing e

� Public group parameter : (Σ, G2, G1, G,H, Ppub, P0, P,Qpub, Q, u)

� Issuer key : (s, x)

� Opener key : (x
′
)

� Starting accumulator value : V0 = uQ

Given two security parameters r, q, the function generates a cyclic additive group
G1 (with a prime order of q bits), two multiplicative groups Zp (with an order
of r bits) and GT (with an order of q ∗ k bits, where k is the embedding degree,
in this case 2) and a bilinear pairing e : G1 ×G1 → GT .
After initializing these groups and the pairing, choose
G,P,G1, G2, P0, H,Q ∈R G1, s, u, x, x

′ ∈R Zp and compute Ppub = xP ,
Qpub = sQ. The issuer key (x, s) is now perfectly hidden in Ppub and Qpub.

Compute Σ = e(G,G)x
′

to hide also the opener key. Finally, compute V0 = uQ
to get the first accumulator value. It is not necessary to calculate V0 here, any
random value would fit.

5.4 User PKI Certificate Generation

Inputs:

39

CHAPTER 5. DYNAMIC ACCUMULATOR SCHEME FROM BILINEAR
PAIRINGS

Figure 5.4: Illustration of the user PKI certificate generation

� CN : unique common name to identify the user

� Password : password to encrypt the private key

Outputs:

� Certificate : a PKI certificate

To identify the user and to ensure a secure connection in the join protocol, a
PKI (Public Key Infrastructure) certificate is generated. To generate this cer-
tificate, standard software, e.g. OpenSSL, is used. This software must be able
to create a certificate which can accomplish both goals, to identify the user and
to secure a connection.
It is necessary to save the user’s information and the associated common name
in a database to be able to provable link a signature to a specific user.
Both parties in the Join protocol need a PKI certificate. The user verifies the
issuer certificate to be sure that he is connected to the correct server and the
issuer authenticates the user on the basis of the user’s certificate.

5.5 Join Protocol

Figure 5.5: Illustration of the join protocol

The protocol is carried out between a user and the issuer.

Inputs:

� Certificate : PKI certificate

� Public group key : public groups and parameter values

40

5.5. JOIN PROTOCOL

� Password : password to encrypt the private values (only user)

� Issuer key : private values (s, x) (only issuer)

User outputs:

� Group secret key : (xi, ai, Si,∆i) encrypted with a password

� User’s witness : (j,Wi, Vi)

Issuer outputs:

� Update database : (∆i, I, u, v, Pi, ai, Si, CN,
sign(H(∆i | I | Pi | ai | Si))

In this protocol, a user i joins the group with the authorization of the issuer
and gets all needed values to sign anonymously. First of all, a trusted encrypted
connection must be established. Due to the use of a PKI, both parties can iden-
tify each other and encrypt the connection. After verifying the certificates on
both sides, the user checks whether the issuer’s common name and the server’s
DNS name match. The issuer on the other side checks whether the user has
already joined the group.
If none of these checks fail, the user and the issuer jointly generate a random
value xi. The issuer does not know the user’s secret key xi but can verify that
the random value v and the public value u are contained in it. After user i
has proven that all elements of I and xi are known to him, a unique member-
ship secret key (ai, Si,∆i) is transferred to the user. The value ai is randomly
chosen, but the issuer must ensure that there is no other user with the same
ai. Finally, user i must sign the values (∆i, I, Pi, ai, Si) and gets his member-
ship witness (Wi, Vi). The user is using the secret key that corresponds to the
user’s PKI certificate. So the user’s identity is provable connected to the values
(∆i, I, Pi, ai, Si). Should actions of the user raise suspicion, the group adminis-
trator can present the authenticated user certificate and a provable link between
an opened signature and the user’s PKI certificate.

1. user i → issuer : I = yP + rH, where y, r ∈R Z∗p

2. user i ← issuer : v ∈R Z∗p and current accumulator Vi

3. user i computes : xi = uy + v, r
′

= ur and Pi = xiP , H
′

= r
′
H

4. user i→ issuer : Pi and H
′

and a proof of knowledge, described in section
5.5.1:

� user i computes: t ∈ Z∗p, W1 = tH, W2 = tP ,
c = H(W1 | W2 | P | Pi | H

′ | commonname), s1 = t + cr
′

and
s2 = t+ ci

� user i → issuer : W1,W2, s1 and s2

41

CHAPTER 5. DYNAMIC ACCUMULATOR SCHEME FROM BILINEAR
PAIRINGS

� issuer computes and verifies whether
c = H(W1 | W2 | P | Pi | H

′
, commonname), vP + uI − Pi = H

′
,

s1H = W1 + cH
′

and s2P = W2 + cPi

5. issuer chooses ai ∈R Z∗p different from all previous ai and computes
Si = 1

ai+x
(Pi + P0)

6. user i ← issuer : ai,Si

7. user i computes : ∆i = e(P, Si) and verifies whether
e(aiP + Ppub, Si) = e(P, xiP + P0)

8. user i← issuer : j number of the current accumulator, Di = 1
ai+x

(Vj−Pi)
and the membership witness Wi = 1

ai+s
Vj

9. user i → issuer : verifies e(aiP + Ppub, Di) = e(P, Vj − Pi) and sends
sign(H(∆i | I | Pi | ai | Si)) (sign is using the private key that corre-
sponds to the user’s PKI certificate)

10. issuer computes : H(∆i | I | Pi | ai | Si)) and
verify(sign(H(∆i | I | Pi | ai | Si)) (verify is using the public key
embedded in the user’s PKI certificate), if successful the issuer appends
the user to the registration database

11. user stores the membership secret key (xi, ai, Si,∆i) (secured with an
encryption mechanism) together with the membership witness (Wi, Vj)

5.5.1 Proof of Knowledge

The proof of security of the non-interactive zero-knowledge protocol executed
in the join protocol contains three parts.

� Correctness To prove correctness, all equations must be correct.

H
′

= vP + uI − Pi
urH = vP + uyP + urH − xiP
xiP = vP + uyP

(v + uy)P = vP + uyP

s1H = W1 + cH
′

(t+ cr
′
)H = tH + cr

′
H

s2P = W2 + cPi

(t+ cxi)P = tP + cxiP

So if both parties are honest, all calculations will be correct.

42

5.6. SIGNATURE PROTOCOL

� Soundness If the discrete logarithm assumption (Definition 2.4.2) holds
in G1, then a prospective member must have knowledge of xi and r

′
to

convince the issuer with non-negligible probability. Due to the knowledge
of xi and r

′
, also Pi = xiP and H

′
= r

′
H are known. The prospective

member must also have knowledge about y and r, otherwise the compu-
tation of I = yP + rH is not possible.
Suppose there are two pairs of challenges and responses (c, y1, y2) and
(c
′
, y
′

1, y
′

1) for the same commitment W1,W2. With the knowledge of both
challenges and responses the verifier can compute

y1 − y
′

1 = cr
′
− c

′
r
′

= r
′
(c− c

′
)

⇒ r
′

=
r
′
(c− c′)

(c− c′)
y2 − y

′

2 = cxi − c
′
xi = xi(c− c

′
)

⇒ xi =
xi(c− c

′
)

(c− c′)

Therefore the joiner (prover) must have knowledge of xi, r
′
, y and r to

convince an honest issuer.
Basically, if there are two pairs of challenges and responses for one com-
mitment, one can construct a knowledge extractor.

� Zero-knowledge To prove the zero-knowledge property, the hash func-
tion is modeled as a random oracle, see Figure 5.8 and the work of Bellare
and Rogaway [5] for more information.
The values t, c, y and r are randomly chosen and y1 = t, y2 = t,
W1 = tH − cH ′ and W2 = tP − cPi are computed. The values
(W1 |W2 | P | Pi | H

′ | commonname) and c are entered into the random
oracle. If (W1 | W2 | P | Pi | H

′ | commonname) has already been sent
to the oracle with c

′ 6= c, another (W1 | W2 | P | Pi | H
′ | commonname)

and c will be chosen. At last I = u−1Pi − vu−1P + u−1H is computed
and along with (W1,W2, y1, y2) sent to the issuer. The dishonest verifier,
using the random oracle, will not be able to notice a difference between
this communication and the real communication.

5.6 Signature Protocol

This protocol is carried out between a signer and a verifier. Notice that the
verifier does not have to be a member of the group.
This protocol aims at showing the signer’s knowledge of a secret xi, (ai, Si),
and the signature on a specific message. The only information anyone can get
from a protocol run, except for the opener, is whether the signer is a member
of the group or not. Before the computation is started, the signer checks with

43

CHAPTER 5. DYNAMIC ACCUMULATOR SCHEME FROM BILINEAR
PAIRINGS

Update Witness whether the membership witness is up-to-date.
The verifier also updates his accumulator value with the program Update Ac-
cumulator prior to the execution of the verify algorithm. This protocol is
non-interactive so the part of the signer and the verifier are described separated.

5.6.1 Sign

Figure 5.6: Illustration of the sign algorithm

The sign algorithm can only be executed by a group member. It produces a
group signature on a given message.
Inputs:

� Message : target message which should be signed

� Public group key : public groups and parameter values

� Password : password to decrypt the private values

� Group secret key : (xi, ai, Si,∆i) encrypted with a password

� User’s witness : (j,Wi, Vi)

Outputs:

� Signature :
(E,Λ, U1, U2, R, T1, T2, T3,Π1,Π2,Π3, s0, s1, s2, s3, s4, s5, s6, s7, s8)

The following steps are performed to produce a valid signature.

1. signer computes random values:
t, r1, r2, r3, k0, k1, k2, k3, k4, k5, k6, k7, k8 ∈R Z∗r

2. signer computes ElGamal encryption of ∆i: E = tG, Λ = ∆iΣt

3. signer computes initial values:
U1 = Si + r1H,
U2 = Wi + r2H,
R = r1G1 + r2G2 + r3H,
T1 = k1G1 + k2G2 + k3H,

44

5.6. SIGNATURE PROTOCOL

T2 = k4G1 + k5G2 + k6H − k7R,
T3 = k8G,
Π1 = e(P, P)k0e(P,U1)−k7e(P,H)k4e(Ppub, H)k1 ,
Π2 = e(Q,U2)−k7e(Q,H)k5e(Qpub, H)k2 ,
Π3 = e(P,H)−k1Σk8

4. signer computes challenge: c = H(message | T3 | Π1)

5. signer computes response: s0 = k0 + cxi, s1 = k1 + cr1, s2 = k2 + cr2,
s3 = k3+cr3, s4 = k4+cr1ai, s5 = k5+cr2ai, s6 = k6+cr3ai, s7 = k7+cai,
s8 = k8 + ct

6. signer outputs: signature (E,Λ, U1, U2, R, T1, T2, T3,Π1,Π2,Π3,
s0, s1, s2, s3, s4, s5, s6, s7, s8)

This signature can be verified by the Verify algorithm.

5.6.2 Verify

Figure 5.7: Illustration of the verify algorithm

The verify algorithm can be executed anyone, who knows the group public key.
Inputs:

� Message : target message which should be signed

� Public group key : public groups and parameter values

� Current accumulator : Vi

Outputs:

� Result : true or false

The following steps are performed to validate a signature.

1. verifier computes challenge: c = H(message | T3 | Π1)

2. verifier checks that:
T1 = s1G1 + s2G2 + s3H − cR,
T2 = s4G1 + s5G2 + s6H − s7R,
T3 = s8G− cE,

45

CHAPTER 5. DYNAMIC ACCUMULATOR SCHEME FROM BILINEAR
PAIRINGS

Π1 = e(P, P)s0e(P,U1)−s7e(P,H)s4e(Ppub, H)s1e(P, P0)ce(Ppub, U1)−c,
Π2 = e(Q,U2)−s7e(Q,H)s5e(Qpub, H)s2e(Q,Vi)ce(Qpub, U2)−c,
Π3 = e(P,H)−s1Σs8Λ−ce(P,U1)c

3. verifier outputs: true, if all equations are correct or false else

5.6.3 Security Proof of the Underlying Zero-knowledge
Protocol

The signature protocol described above is based on a zero-knowledge protocol.
To show the security of this non-interactive zero-knowledge signature protocol,
three properties (see Section 2.3) must be fulfilled.

� Correctness The correctness property is fulfilled if all equations are cor-
rect. So an honest signer and an honest verifier can always execute the
protocol.
The first equation T1 includes the values c, k1, k2, k3, r1, r2 and r3.

T1 = s1G1 + s2G2 + s3H − cR
= (k1 + cr1)G1 + (k2 + cr2)G2 + (k3 + cr3)H−

c(r1G1 + r2G2 + r3H)
= k1G1 + cr1G1 − cr1G1 + k2G2 + cr2G2 − cr2G2 + k3H+

cr3H + cr3H − cr3H

= T1

The values c, ai, k4, k5, k6, k7, r1, r2 and r3 are included in the equation T2.
So the user’s identifier ai is now linked to the hashed message c.

T2 = s4G1 + s5G2 + s6H − s7R

= (k4 + cr1ai)G1 + (k5 + cr2ai)G2 + (k6 + cr3ai)H−
(k7 + cai)(r1G1 + r2G2 + r3H)

= k4G1 + (cr1ai)G1 − (cr1ai)G1 + k5G2 + (cr2ai)G2−
(cr2ai)G2 + k6H + (cr3ai)H − (cr3ai)H − k7R

= T2

In the equation T3, a part of the ElGamal encryption E, and therefore t,
is linked to the values k8 and c.

T3 = s8G− cE
= (k8 + ct)G− ctG
= k8G = T3

46

5.6. SIGNATURE PROTOCOL

After showing the correctness of the sum equations, the product equations,
using pairings and their properties, are reviewed. Π1 connects the values
of Si, c, xi, ai, k0, k1, k4, k7 and r1, now all sum equations are linked to Π1

and xi.
In the last part of the calculation of Π1, the exponents of different pairings
are calculated separately for a better overview.

Π1 = e(P, P)s0e(P,U1)−s7e(P,H)s4e(Ppub, H)s1e(P, P0)c

e(Ppub, U1)−c

= e(P, P)k0+cxie(P,U1)−k7−caie(P,H)k4+cr1ai

e(Ppub, H)k1+cr1e(P, P0)ce(Ppub, U1)−c

= e(P, P)k0e(P,U1)−k7e(P,H)k4

e(Ppub, H)k1e(P, P)cxie(P,U1)−caie(P,H)cr1ai

e(Ppub, H)cr1e(P, P0)ce(Ppub, U1)−c

= Π1 · e(P, P)cxie(P, Si + r1H)−caie(P,H)cr1ai)

e(P,H)xcr1e(P, P0)ce(P, Si + r1H)−cx

= Π1 · e(P, P)cxie(P,
1

ai + x
(Pi + P0) + r1H)−cai

e(P,H)cr1aie(P,H)xcr1e(P, P0)c

e(P,
1

ai + x
(Pi + P0) + r1H)−cx

= Π1 · e(P, P)cxie(P,
1

ai + x
(Pi + P0))−caie(P, P0)c

e(P,
1

ai + x
(Pi + P0))−cxe(P,H)−cr1aie(P,H)cr1ai

e(P,H)xcr1e(P,H)−xcr1

= Π1 · e(P, P)cxie(P, P)−xi(
cai

ai+x)
e(P, P0)c

e(P, P0)−
cai

ai+x e(P, P)−xi
cx

ai+x

e(P, P0)−
cx

ai+x ,

where cxi − xi(
cai

ai + x
)− xi(

cx

ai + x
)

= cxi − xi(
c(ai + x)
ai + x

) = 0

and c− cai
ai + x

− cx

ai + x
= c− c = 0

→ Π1 = Π1

Now the values Wi, Vi, c, ai, k2, k5, k6, k7 and r2 are included in the equa-
tion for Π2. This equation checks whether the signer’s ai has been revoked

47

CHAPTER 5. DYNAMIC ACCUMULATOR SCHEME FROM BILINEAR
PAIRINGS

from the current accumulator value Vi. Note, that the verifier receives Vi
from the Update Accumulator algorithm. Therefore, the witness of the
signer, Wi, must be up-to-date.

Π2 = e(Q,U2)−s7e(Q,H)s5e(Qpub, H)s2e(Q,Vi)ce(Qpub, U2)−c

= e(Q,U2)−k7e(Q,H)k5e(Qpub, H)k2e(Q,U2)−caie(Q,H)cr2ai

e(Qpub, H)cr2e(Q,Vi)ce(Qpub, U2)−c

= Π2 · e(Q,Wi + r2H)−caie(Q,H)cr2aie(Qpub, H)cr2e(Q,Vi)c

e(Qpub,Wi + r2H)−c

= Π2 · e(Q,Wi)−caie(Q, r2H)−caie(Q,H)cr2aie(Qpub, H)cr2

e(Qpub, r2H)−ce(Q,Vi)ce(Qpub,Wi)−c

= Π2 · e(Q,Wi)−c(ai+s)e(Q,Vi)c

where Wi =
1

ai + s
Vi

→ Π2 = Π2

In the last equation, the remaining part of the ElGamal encryption Λ is
linked to Si, c, t, k1, k8 and r1.

Π3 = e(P,H)−s1Σs8Λ−ce(P,U1)c

= e(P,H)−k1Σk8e(P,H)−cr1ΣctΛ−ce(P,U1)c

= Π3 · e(P,H)−cr1ΣctΣ−ct∆−ci e(P, Si + r1H)c

= Π3 · e(P,H)−cr1e(P,H)cr1∆−ci e(P, Si)c

→ Π3 = Π3

So an honest prover and an honest verifier can calculate the equations
without any errors.

� Soundness If the discrete logarithm (Definition 2.4.2) holds in G1, a
PPT signer must have the knowledge of Wi, (ai, Si), xi and t such that
e(aiQ+Qpub,Wi) = e(Q,Vi), e(aiP + Ppub, Si) = e(P, xiP + P0),
E = tG and Λ = e(P, Si)Σt, so that the verifier in the protocol accepts
with non-negligible probability. Suppose there are two pairs of challenges
and responses (c, s0, . . . , c8) and (c

′
, s
′

0, . . . , s
′

8) for the same commitment
(E,Λ, U1, U2, R, T1, T2, T3,Π1,Π2,Π3).

Let fi = si−s
′
i

c−c′ , i = 0, . . . , 8, then f1 = k1+cr1−k1−c
′
r1

c−c′ , f2 = r2, f3 =
r3, f4 = r1ai, f5 = r2ai, f6 = r3ai, f7 = ai, f8 = t and f0 = xi, where

R = f1G1 + f2G2 + f3H,

f7R = f4G1 + f5G2 + f6H,

E = f8G,

48

5.7. UPDATE WITNESS ALGORITHM

e(Ppub, U1)e(P, P0)−1 = e(P, P)f0e(P,U1)−f7e(P,H)f4e(Ppub, H)f1 ,

e(Qpub, U2)e(Q,Vi)−1 = e(Q,U2)−f7e(Q,H)f5e(Qpub, H)f2 ,

Λe(P,U1)−1 = e(P,H)−f1Σf8 .

From the first two equations above, the prover can calculate
∞ = (f4−f7f1)G1+(f5−f7f2)G2+(f6+f7f3)H (∞ is the identity element
of G1, see 2.2.1). The discrete logarithm definition in G1 implies that
f4 = f7f1 and f5 = f7f2. So the prover has knowledge of Wi, (ai, Si), xi
and t satisfying the relations.
Basically, this means that if there are two pairs of challenges and responses
for one commitment, one can build a knowledge extractor.

� Zero-knowledge To prove the zero-knowledge property of this
non-interactive zero-knowledge protocol, it is necessary to assume that the
hash function H is a random oracle. A dishonest verifier V∗ can ask the
random for oracle hash values.
Whenever V∗ asks for a signature of m, the simulator randomly chooses
(E,Λ, U1, U2, R, c, s0, . . . , s8) and computes :

T1 = s1G1 + s2G2 + s3H − cR,
T2 = s4G1 + s5G2 + s6H − s7R,

T3 = s8G− cE,
Π1 = e(P, P)s0e(P,U1)−s7e(P,H)s4e(Ppub, H)s1e(P, P0)ce(Ppub, U1)−c,

Π2 = e(Q,U2)−s7e(Q,H)s5e(Qpub, H)s2e(Q,Vi)ce(Qpub, U2)−c,

Π3 = e(P,H)−s1Σs8Λ−ce(P,U1)c.

Now (m,T3,Π1, c) is entered into the table of the random oracle. If
(m,T3,Π1) has already been send to the random oracle with c

′ 6= c, an-
other T3,Π1 and c will be chosen. Finally, the signature is sent to the
verifier. See Figure 5.8 for an overview of the simulation.
The random oracle works as defined below:

1. Given (m,T3,Π1) /∈ oracletable choose random c ∈R Zp, enter
(m,T3,Π1, c) in the table and output c.

2. Given (m,T3,Π1) such that ∃c : (m,T3,Π1, c) ∈ arcaletable, return c.

For the adversary, in this case the dishonest verifier, it is not possible to
distinguish a successful communication with the prover from one with the
simulator.

49

CHAPTER 5. DYNAMIC ACCUMULATOR SCHEME FROM BILINEAR
PAIRINGS

��
������	�
��	
���	

�����������	�

��������

������	
�

����

Figure 5.8: Diagram of the simulation in the random oracle model

5.7 Update Witness Algorithm

Inputs:

� Public group key : public groups and parameter values

� Password : password to decrypt the private values

� Group secret key : ai encrypted with a password

� User’s witness : (j,Wi, Vi)

Outputs:

� New user’s witness : (j + n,Wi+n, Vi+n)

Recall that in the accumulator database, each entry consists of three values
(ai, b, Vi). The value ai is the identifier of the member that has been revoked.
The bit b specifies if the accumulator has been updated in the course of a re-
vocation or another event. And Vi is the current accumulator value. For more
information about the database see 6.1.
With an established connection to the accumulator database, a user can update
his membership witness. The member retrieves each row from the accumulator
database table below j, which was the current accumulator at the last time the
member updated his witness.
To calculate the new witness Wi+n, the following procedure is executed:

Figure 5.9: Illustration of the update witness algorithm

50

5.8. UPDATE ACCUMULATOR ALGORITHM

for (k = j + 1; k + +; k ≤ (j + n)) do

b1 = 1
ak−ai

;

b2 = 1
ai−ak

;

Wk = b1Wk−1 + b2Vk−1;

Vk = Vk−1;

end for
return (j + n,Wi+n);

Now the member can sign messages with an up-to-date witness.

5.8 Update Accumulator Algorithm

Figure 5.10: Illustration of the update accumulator algorithm

Inputs:

� None : no inputs required

Outputs:

� New accumulator : (Vj)

This algorithm establishes a secure connection to the accumulator database and
returns the current accumulator value.

5.9 Open Algorithm

Inputs:

� Public group key : public groups and parameter values

� Opener’s secret key : x
′

� Signature :
(E,Λ, U1, U2, R, T1, T2, T3,Π1,Π2,Π3, s0, s1, s2, s3, s4, s5, s6, s7, s8)

Outputs:

51

CHAPTER 5. DYNAMIC ACCUMULATOR SCHEME FROM BILINEAR
PAIRINGS

Figure 5.11: Illustration of the open algorithm

� Signing user : (∆i, I, u, v, Pi, ai, Si, CN, sign(H(∆i | I | Pi | ai | Si))

� Non-interactive proof : proof of knowledge of x
′

The opener can identify the member who has produced the signature. To this
end the opener computes ∆i = Λe(E,G)x

′

and a non-interactive proof of knowl-
edge of x

′
. With the resulting ∆i the user can be uniquely identified in the

registration database. In this database, also the signature which was created at
the end of the join phase with the member’s certificate private key is deposited.
So with the proof of the opener and the digital signature, everyone, who posses
the public key of the member, can verify that a certain identity has signed a
message and authenticate the results produced in the join protocol. The opener
proof runs as follows.

� r1, r2 ∈R Z∗r

� Γ1 = e(G, r1G) and Γ2 = e(E, r2G)

� cp1 = H(∆i | Σ | Γ1 | timestamp) and cp2 = H(∆i | Λ
∆i
| Γ2 | timestamp)

� sp1 = r1 − cp1x
′

and sp2 = r2 − cp2x
′

To verify this proof, the Judge algorithm should be executed.

5.10 Judge Algorithm

Inputs:

� Public group key : public groups and parameter values

� Signing user : ∆i

52

5.10. JUDGE ALGORITHM

Figure 5.12: Illustration of the judge algorithm

� Non-interactive proof : proof of knowledge of x
′

Signer Outputs:

� Result : true or false

Anyone who has access to the outputs of the Open algorithm can run this
algorithm to check whether the proof of knowledge of x

′
is correct. The check

runs as follows:

� check whether cp1 = H(∆i | Σ | Γ1 | timestamp) and cp2 = H(∆i | Λ
∆i
|

Γ2 | timestamp)

� check whether e(G, sp1G) = Γ1Σ−cp1 and e(E, sp2G) = Γ2(Λ
∆i

)−cp2

5.10.1 Proof of the Non-interactive Zero-knowledge Pro-
tocol

This proof shows that only an opener with the knowledge of the opening key
x
′

is able to convince the judge. To prove this, the three requirements of a
zero-knowledge protocol must be fulfilled: correctness, soundness and zero-
knowledge.

� Correctness The equations given in the judge algorithm must be correct
if the opener and the judge are honest. The first check the judge verifies,
whether cp1 and cp2 are the correct hash values, is always true if both
parties are honest.
The following equations are calculated as follows:

e(G, sp1G) = Γ1Σ−cp1 ,

e(G, (r1 − cp1x
′
)G) = e(G, r1G)e(G,G)−cp1x

′

,

e(G,G)r1−cp1x
′

= e(G,G)r1−cp1x
′

,

e(E, sp2G) = Γ2(
Λ
∆i

)−cp2 ,

e(E, (r2 − cp2x
′
)G) = e(E, r2G)e(E,G)−cp2x

′

,

e(E,G)r2−cp2x
′

= e(E,G)r2−cp2x
′

.

53

CHAPTER 5. DYNAMIC ACCUMULATOR SCHEME FROM BILINEAR
PAIRINGS

It is clear that the correctness requirement is fulfilled.

� Soundness For the soundness requirement the opener is modeled as a
Turing machine, so it can be rewound by a cheating judge. Assume the
opener can output with non-negligible probability a valid proof without
knowing the secret opener key. The judge gets the first zero-knowledge
proof from the opener and saves the values Γ1,Γ2, cp1, cp2, sp1, sp2. Then
the opener is rewound to the point where the hash values cp1 and cp2 are
calculated, note that the time tape of the Turing machine is not rewound.
So the hash values change to c

′

p1 and c
′

p2 and thereby s
′

p1 and s
′

p2. These
new values are sent to the judge. Now, the judge solves the following
equation:

sp1 = r1 − cp1x
′

s
′

p1 = r1 − c
′

p1x
′

⇒ sp1 − s
′

p1 = x
′
(−c

′

p1 + cp1)

x
′

=
sp1 − s

′

p1

−c′p1 + cp1

If there is a way to rewind the opener and produce two pairs of challenges
and responses for one commitment, a knowledge extractor can be built
that extracts the secret from the cheating opener, what leads to a con-
tradiction. Therefore we conclude that a cheating opener cannot output
faked proofs.

� Zero-knowledge To show the zero-knowledge property of the protocol,
the random oracle model is used, as presented in Figure 5.8.
The dishonest opener does not know the secret x

′
. So the simulator com-

manding this opener tries to simulate the protocol in a way that an ad-
versary cannot distinguish from a real protocol run. Without knowing the
secret, the simulator randomly choses cp1, cp2, sp1, sp2. The value ∆i must
be chosen correspondingly to a given signature and Λ. The simulator can
use a signature data from an honest opener. Another possibility is that
the simulator is a member of the group and generates signatures only to
open them by itself.
The values Γ1 and Γ2 are computed as follows:

Γ1 = e(G, sp1G)Σcp1

Γ2 = e(E, sp2G)(
Λ
∆i

)cp2

The tuples (∆i,Σ,Γ1, timestamp) and (∆i,
Λ
∆i
,Γ2, timestamp) are stored

with the corresponding cp1 and cp2 in the History table of the random
oracle.
When an adversary tries to check whether the equations are right, the

54

5.11. REVOKE ALGORITHM

results will be correct. The adversary cannot distinguish between a real
protocol run and a simulated one.

5.11 Revoke Algorithm

Figure 5.13: Illustration of the revoke algorithm

Inputs:

� Public group key : public groups and parameter values

� Signing user : ai

� Issuer key : (s, x)

Signer outputs:

� New accumulator value : Vj

This algorithm removes a specific ai from the accumulator, which in turns trans-
fers to a revocation of the member i from the group. More specifically, the issuer
must compute a new accumulator value Vj = 1

ai+s
Vj−1 and store it in the ac-

cumulator database. Now every revoked user who wants to call the Update
Witness algorithm is unable to be successful, since the algorithm as presented
would calculate 1

ai−ai
. The user’s signatures will not be verified successfully if

his witness is not up-to-date.

5.12 Proof of the Security Requirements

To execute all following proofs, a new assumption has to be made.

55

CHAPTER 5. DYNAMIC ACCUMULATOR SCHEME FROM BILINEAR
PAIRINGS

Assumption 5.12.1. Coalition-Resistance
If the q-SDH assumption, see 2.4.5, holds, then in this presented scheme, whose
group size is bounded by q, the coalition-resistance assumption holds also. The
predicate of this assumption Q is defined as follows:

Q(〈Σ, G2, G1, G,H, P, Ppub, P0, Qpub, Q, u〉, Vi, 〈xi, ai,∆i, Si〉,Wi) = 1
⇔ (e(aiP + Ppub, Si) = e(P, xiP + P0)
∧e(aiQ+Qpub,Wi) = e(Q,Vi)),

where Vi is the current accumulator value.
The proof is only sketched here, for the complete proof see Nguyen [33]. The
basic idea is that if a PPT adversary A can break the coalition-resistance of the
scheme, one will be able to construct a PPT adversary B which can break the
q-SDH assumption.
The adversary A can compute a new membership secret key tuple
(x∗i , a

∗
i , S
∗
i ,∆

∗
i ,W

∗
i) which has not been generated before and does not belong to

any member in the group. The value S∗i = 1
a∗i +x (Pi + P0) and the values P and

P0 can be written as P = R and P0 = zR, where S∗i = 1
a∗i +x (x∗iR + zR). If

the adversary gets another membership secret key tuple which was generated by
an honest user, it will be possible to compute z. When B gets z it can compute
(c, 1

c+zR) for any c or in a special case for c = a∗i − am, where m is the honest
user. Either way the q-SDH assumption does not hold.
As long as the q-SDH assumption holds, the coalition-resistance assumption
holds, too.

The definitions of the oracles and the security requirements can be found in
Section 3.4.3.

� Correctness It is explained above that for the main signature protocol
the correctness property holds. One can easily verify, that for all other
algorithms and protocols the correctness requirement is also fulfilled. So
the scheme has the correctness property.

� Anonymity If there is a PPT adversary A that can break the anonymity
property of this scheme, it is possible to construct PPT adversary B that is
able to break the IND-CPA property, see 3.2.2, of the ElGamal encryption.
An ElGamal public key (G,Σ) is given and cannot be changed by any
of the parties. The adversary B constructs a complete new group. It
generates the public parameters (Σ, G2, G1, G,H, Ppub, P0, P,Qpub, Q, u)
and the issuing key (s, x). The only key unknown to B is the opening
key x

′
, which is also the secret key of the ElGamal encryption. Let B

completely control and simulate the issuer and all possible users of the
group. Now B provides A with the issuing key and all public values of the
group, furthermore A gains access to following oracles:

– SndToI(·, ·), SndToU(·, ·), WReg(·, ·), USK(·), CrptU(·, ·),
RevokeU(·) and Witness(·). Since B is in nearly complete control
of the group it can easily simulate these oracles.

56

5.12. PROOF OF THE SECURITY REQUIREMENTS

– Ch(b,·,·,·). A sends a challenge (i0, i1,m) to B. B finds ∆ib in the
database and has it encrypted by an honest user with the ElGamal
algorithm. Now B simulates the non-interactive zero-knowledge sig-
nature protocol as in the proof described in 5.6.3. Then, the complete
signature
(E,Λ, U1, U2, R, T1, T2, T3,Π1,Π2,Π3, s0, s1, s2, s3, s4, s5, s6, s7, s8) is
sent to A.

Because A can break the anonymity property, it can send B the correct
identity i0 or i1 which has signed the message m. So B can distinguish
between two ciphertexts of an ElGamal encryption with non-negligible
probability. As long as the IND-CPA property of the ElGamal encryption
holds, the anonymity of the scheme holds.

� Traceability Suppose there is an adversary A that can break the traceabil-
ity requirement. Then it is possible to construct an adversary B which
is able to break the coalition-resistance assumption, described in Section
5.12.1, of the scheme.
In this experiment A signs a message and sends it to an honest verifier.
Suppose the signature is valid but the opener cannot trace the identity of
the signer, or the opener is able to find the identity but cannot prove this
to the judge.
As shown in 5.6.3, the soundness property for the signature protocol holds.
Therefore, B can find Wi, ai, Si, xi and t fulfilling the equations
E = tG,Λ = e(P, Si)Σt, e(aiQ+Qpub,Wi) = e(Q,Vi) and
e(aiP + Ppub, Si) = e(P, Pi + P0). So an honest opener can compute

∆i = Λe(E,G)x
′

from the signature.
The issuer should be uncorrupted and there should be no possibility to
change the values in the registration database. Also, the adversary is not
able to change the keys of the group members (CrptU(·) is not available
for group members).
This means that if ∆i cannot be found in the registration database, the
adversary B will produce a new valid tuple (Wi, ai, Si, xi) for the group.
This means that the coalition-resistance assumption is broken.
Conversely, if the q-SDH assumption and the traceability property of the
scheme hold, the coalition-resistance assumption will hold also.

� Non-frameability To show that the non-frameability property in this scheme
holds, suppose there is a PPT adversary A which can break this property.
Then there exists a adversary B which can break the discrete logarithm
assumption over G1, noted in section 2.4.2. Therefore, B is given a chal-
lenge (P, Pc = zP), where P ∈ G1 and z ∈ Zr, and B is successful if it is
able to return z.
The adversary B constructs a new instance of the group by generating
u, s, x, x

′
, d ∈R Zr and G,G1, G2, H,Q ∈R G1 and sends the group public

key (u,Q,Qpub, P, P0 = dP, Ppub = xP,H,G,G1, G2,Σa = e(G,G)x
′

), the

57

CHAPTER 5. DYNAMIC ACCUMULATOR SCHEME FROM BILINEAR
PAIRINGS

issuing key (x, s) and the opening key x
′

to the adversary A. B simulates
the whole group and a set of possible users. It chooses an identity i0 ran-
domly from the set of possible users.
B gives A access to the following oracles:

– SndToU(i,Min). If i 6= i0, B just executes the join protocol with
an honest user i and sends Min to this user. Whenever i = i0,
B simulates the join protocol and ensures that Pi0 = P ∗. Sup-
pose the membership secret key which is calculate in this protocol is
(xi0 , ai0 , Si0 ,∆i0), where xi0 = z is unknown to B.

– WReg(·,·), GSig(·,·), USK(·), RevokeU(·) and Witness(·). Due
to the unrestricted control of the group and all possible users, B can
easily provide these oracles. The only exception is the call USK(i0),
then B aborts.

If A is successful with probability ε, then the probability that A imper-
sonates i0 in the signature protocol is ε

q , where q is the maximum number
of members in the group.
Due to the soundness property of the signature protocol, B is able to find
ai1 , Si1 , xi1 and t, so that Ea = tG,Λa = e(P, Si1)Σta and the equation
e(ai1P + Ppub, Si1) = e(P, xi1P + P0) is true.
Since the used digital signature scheme, using the PKI certificate, is UNF-
CMA, see 3.1.2, it holds that e(P, Si0) = e(P, Si1) or Si0 = Si1 .
So 1

ai0+x (xi0P + dP) = 1
ai1+x (xi1P + dP). From this equation B can

compute z = xi0 .
Conversely, this implies that if the discrete logarithm assumption holds
the non-frameability property will also hold.

58

6 Environment and
Development

The software solution developed in this thesis consists of several applications.
The goal is to use standard software where possible, that is highly available,
reliable and, if feasible, open-source. To accomplish this goal the first imple-
mentations were completely developed under Linux.
In the following we describe the programming language and the used libraries.
In Section 6.2 the applications of the scheme are detailed and the use of these
programs is explained. The next two sections deal with different problems which
showed up during the implementation. In Section 6.5, the development of a web
service for test purposes is described and in Section 6.6 we present our final so-
lution.
In Figure 6.1 a raw overview of the implemented programs is given. On the
left hand side the client applications are arranged. All client programs can be
executed under Windows or Linux. In the center of the figure, we can find the
server applications, running in a Linux environment. On the right hand side are
the databases. These databases can be platform independent.
Every program in the figure except the User PKI certificate generation and
the Certificate issuance process receives the public key group information
(groupname.gpk) and parameters of the group (groupname.param) as additional
input.
A client does not need all the outlined applications. If a user just want to verify
given signatures, the only programs he needs are the Update Accumulator
program and the Verify program. A member of the group definitely needs the
programs User PKI certificate generation and Join to get his membership
certificate. The PKI application creates a certificate, binding the user’s identity
to a public key, and transfers it to this user. Only with this certificate from an
independent PKI server, the user can successfully execute the Join application
and get his membership certificate and his membership witness. Through the
use of certificates and SSL, the communication is secured in the join protocol.
The PKI server runs the certificate issuance process to generate new certificates
for prospective members.
The next client-server-process comprises the Update Witness program, Up-
date Accumulator program and the Send Accumulator process on the is-
suer server. The process has read access to the accumulator database. The
process sends either only the current accumulator value if the Send Accumu-
lator program requests it or a number of entries from the accumulator table,
specified by the Update Witness program. In both cases the connection be-

59

CHAPTER 6. ENVIRONMENT AND
DEVELOPMENT

Figure 6.1: Overview of the used programs

tween the Send Accumulator process and the program on the client side is
secured with the uses of SSL and the certificates created by the PKI.
The programs Sign and Verify are both executed on the client side and need
no input from server processes.
The last client program is the Judge program. It checks the proof generated
by the Opener process. The opener server runs in a Linux environment and is
separated from the issuer server to guarantee the separation of the two author-
ities. The Revoke program, which is located on the issuer server, due to the
use of the issuing key, gets the needed information to revoke a user from the
Open process. So both authorities, the issuer and opener server, must agree
upon the process of revoking a member.

6.1 Programming Language and Libraries

The programming language is C++, which is a general-purpose programming
language, regarded as a middle-level language, because it combines high-level

60

6.2. IMPLEMENTATION OF THE SCHEME

and low-level language features. There are many C++ compilers and inter-
preters available, but not all of them are able to compile code under Windows
and Linux. After the first development steps, under Linux the compiler g++
was chosen because it is the standard C++ compiler under Linux. To achieve
the same functionality under Windows, the program MinGW (Minimalist GNU
for Windows) is used. This is a free native software port of the GNU Compiler
Collection (GCC) which is distributed with free import libraries and header files
for Windows.
To provide supporting functionalities to the programs of the scheme, several
software libraries are used. The PBC (Pairing-Based Cryptography) library [28]
is a free C library released under the GNU Public License. The GMP library
[21] is a C-library for multiple precision arithmetic (GNU Multiple Precision
Arithmetic). The PBC library, is designed to be the backbone of pairing-based
implementations and provides such routines like elliptic curve generation, ellip-
tic curve arithmetics and pairing computation. One of the main goals of this
library is to provide software portability, but this goal was not easy to accom-
plish in the implementation. Nonetheless, when working with groups, elliptic
curves and pairings, the PBC library is a mighty tool.
There is no adequate implementation of the GMP library for Windows. To
solve this problem, the program MSYS (Minimal SYStem) is installed under
Windows, which provides a lightweight UNIX-like shell environment to enable
the execution of configuration scripts to install UNIX-based programs under
Windows. By the use of this shell environment, both libraries (PBC and GMP)
could be ported to Windows. After compiling and testing these libraries under
Windows the first code parts were transfered.
Another often used library is the OpenSSL (Secure Sockets Layer) library, which
does not only implement the SSL and TLS (Transport Layer Security) proto-
cols, but also allows the use of many basic cryptographic and utility functions.
The OpenSSL library is also not supported under Windows. After a similar
procedure like for the GMP and PBC libraries, the OpenSSL library could be
compiled and used under Windows.
All other resources used by this software solution are small libraries which are
only one or two files in size. These libraries are not hard to transfer to other
operation systems because the complexity of these libraries is small.

6.2 Implementation of the Scheme

6.2.1 User PKI Certificate Generation

This program is a bash script which does not need to be compiled. It is a connec-
tion between the Apache web server and the OpenSSL program. When a user
registers himself on the web page, his information is first saved in a database,
which uses the MySQL (Structured Query Language) system to organize the
data, and a new unique serial number for this user is generated.

61

CHAPTER 6. ENVIRONMENT AND
DEVELOPMENT

The bash script calls the OpenSSL functions to generate a new SSL certificate,
which stores information about the user. The private key of the certificate,
which uses the RSA algorithm, is encrypted with the 3DES (Data Encryption
Standard) algorithm. The password for 3DES is chosen by the user.
An example certificate is given below, note that the private key is appended to
the certificate to provide all necessary information in just one file for a user.
This is not a security risk as long as the password chosen for the encryption of
the private key is strong enough. Should an adversary get the encrypted private
key the password should resist dictionary attacks, see [37]. The format of the
certificate is DER (Distinguished Encoding Rules) which is a message transfer
syntax specified by the ITU (International Telecommunication Union) in the
document X.960.

Certificate:
Data:

Version: 3 (0x2)
Serial Number: 14 (0xe)
Signature Algorithm: sha1WithRSAEncryption
Issuer: C=DE, ST=NRW, O=Test Co, OU=IT section,
CN=UserCA/emailAddress=user1@test.com
Validity

Not Before: Oct 17 12:34:51 2008 GMT
Not After : Oct 17 12:34:51 2009 GMT

Subject: C=DE, ST=NRW, O=TestCooperation, OU=IT,
CN=user1/emailAddress=user@test.com
Subject Public Key Info:

Public Key Algorithm: rsaEncryption
RSA Public Key: (1024 bit)

Modulus (1024 bit):
00:ab:92:9a:a8:74:b8:24:da:da:ee:de:9a:0c:d1:
04:50:10:2a:b2:3b:e2:48:a6:

Exponent: 65537 (0x10001)
X509v3 extensions:

X509v3 Basic Constraints:
CA:FALSE

Netscape Comment:
OpenSSL Client Certificate

X509v3 Subject Key Identifier:
01:A6:16:8F:A5:34:D2:34:55:7D:30:50:5E:BF:4C:51:

X509v3 Authority Key Identifier:
keyid:49:2E:B7:B8:A8:89:C4:0E:AA:3D:26:BC:30:0E:

Signature Algorithm: sha1WithRSAEncryption
dd:97:cc:2c:93:e0:22:b7:81:61:5d:c5:eb:62:8f:75:66:00:
95:d7:8b:28:00:d2:66:74:49:72:43:37:

-----BEGIN CERTIFICATE-----

62

6.2. IMPLEMENTATION OF THE SCHEME

MIIDgTCCAmmgAwIBAgIBDjANBgkqhkiG9w0BAQUFADB+MQswCQYDVQQGEwJERTEM
MAoGA1UECBMDTlJXMRkwFwYDVQQKExBUZXN0IENvb3BlcmF0aW9uMRMwEQYDVQQL
EwpJVCBzZWN0aW9uMRAwDgYDVQQDEwdVc2VyIENBMR8wdP/g==
-----END CERTIFICATE-----
-----BEGIN RSA PRIVATE KEY-----
Proc-Type: 4,ENCRYPTED
DEK-Info: DES-EDE3-CBC,1E39E24712049157

kK43FNPxw/aid4h1xbEv8PQxBpuNO7GBSWmBv42UK+JZsvaQA9zvWF4CMSWNflvc
r7lJGx0ZqpcAwrAvxLMyE7kRhyRgRpXjzg==
-----END RSA PRIVATE KEY-----

Subsequent to the registration, the user can download his certificate from the
server.
This part of the scheme depends very much on the field of application. In a
company or another organized federation there are many more ways to distribute
these certificates to the users and to verify a user’s identity.

6.2.2 Group Key Generation

The group key generation (GKg) program uses the GMP and PBC libraries be-
sides the standard C++ libraries. This application needs up to four arguments
(r, q, d, g). The first two arguments define the bit sizes of the order of the groups
Zp (bit size of p = r) and G1 (q). First an algorithm searches for two prime
numbers with a minimum bit length as given by the arguments. For security
reasons, generic discrete logarithm algorithms must be infeasible in groups of
order p and finite field discrete logarithm algorithms must be infeasible in finite
fields of order q2. Typical values for p and q are 160 bit and 512 bit.
The other arguments stand for the directory (d) where all generated files are
stored and the name of the resulting accumulator group (g).
The first file generated by the function is named groupname.param, in which
various information about the parameter of the group is saved. In this file one
can find the prime numbers which generate Zp and G1 and the summands of
the Solinas prime equation which produces r.
The group GT is a subgroup of Fq2 , thus the embedding degree is 2 and this
group is automatically generated whenever a pairing is applied.
Next the program checks whether the generated pairing is symmetric, this en-
sures a faster pairing but the group elements are larger than in an asymmetric
case. After this check, all random elements are initialized and the public group
values (also called key) are stored in a file named groupname.gpk. The adminis-
trator keys are saved in the files groupname.ik, issuing key, and groupname.ok,
opening key.
The last step is saving the first accumulator value in the file groupname.accu.
This value is used to initialize the MySQL accumulator database. In this
database all changes of the accumulator value are recorded and everyone is
able to fetch the current accumulator value.

63

CHAPTER 6. ENVIRONMENT AND
DEVELOPMENT

If no error occurs during the execution of the program, the return code is 0; else
−1 is returned.
The MySQL accumulator database should abide by some conventions. The ac-
cumulator table, called “accu”, should look like this:

ai bit Vi

0 0 [17787, 764882]
637 1 [2774, 6483]
455 1 [28864, 74630]

Table 6.1: Accumulator Database Scheme

The values in the table above are only examples. The column ai is the corre-
sponding ai of the removed user, therefore 0 is an entry in the table when it
is initialized. The second column bit defines whether a user has been removed
(value equals 1) or another event has changed the accumulator value, e.g. ini-
tializing the accumulator (then the value equals 0). The last column Vi is the
accumulator value, and the last item in this column is the current accumulator.

6.2.3 Join Protocol

The join protocol consists of two parties. The user, who calls the join program,
and the group administrator (issuer), who calls the issue program.
The join program uses the GMP and PBC libraries to compute the different
values and pairings, the Windows or Linux socket libraries to establish a con-
nection to the issuer, the OpenSSL libraries to secure this connection and use
basic cryptographic algorithms like AES, a SimpleIni library to read informa-
tion from configuration files, and a base64 library to convert simple bits strings
to their base 64 representation.
The issue program uses almost the same libraries as the join program, except
the MySQL library to connect to the MySQL server, and the syslog library to
log messages produced by the program.
Both programs get no arguments but can be configured in their configuration
files (Join.conf and Iss.conf).

Issuer
First, the issuer daemon on the server must be running to enable a user to join.
To run a program as a daemon, the program must create a child process of itself
and then kill itself. Since in Linux no process can run without having a parent
process, it is necessary to set the main process in Linux, called init for initial-
ization, as parent process for the issuer daemon. It is also important that this
self-created process is not listening to normal control signals like Ctrl+C and
writes its messages to the syslog daemon, which stores them in /var/log/syslog.

64

6.2. IMPLEMENTATION OF THE SCHEME

Only when another process sends the kill signal to a daemon, it will terminate.
After the program is running as a daemon, the files groupname.param, group-
name.gpk and groupname.ik, created by the group key generation, are loaded.
The connection to the MySQL databases and to the TCP/IP 1 socket are es-
tablished. The network connection is not yet secured.
To secure the connection, a SSL CTX object is created to provide a framework
for all connections this server will handle. This object fetches the server certifi-
cate and prepares the relevant resources for the upcoming connections.
Now the issuer daemon enters a never ending while-loop and waits for connec-
tion attempts from clients or termination signals from other processes. If a user
connects, the connection is only acknowledged if this attempt is a SSL connec-
tion. After the SSL handshake, the server checks the certificate of the client.
The common name embedded in the certificate identifies the user. So the server
can check whether the user has already joined the group, or has been revoked
from the group. If one of this status values are set (already joined or revoked),
a warning will be output to the user and the connection will be terminated.
The next step is the technical implementation of the overview given in Section
5.5. In step 4, a hash function is used to map the elements P, Pi, H

′
and CN to

one 160 bit string. The issuer uses the public element P , gets the two elements
Pi and H

′
from the joiner and retrieves the CN from the certificate which the

user has sent at the beginning of the protocol, before any other elements were
transferred. The OpenSSL SHA1 (Secure Hash Algorithm) implementation is
used for the hash algorithm.
To choose an unique element ai for each new user, a function randomly creates
an element and then asks the database to ensure that this element has not been
created before. If ai is chosen, the user will now be mapped to a unique element
in the group.
At the end of the description given in 5.5, the user sends a signed hash value to
the server. To verify these bits, the issuer computes the hash value of the
elements ∆i, I, Pi, ai and Si (all are known to the issuer) and then verifies
the signed message from the user and compares the result with the output of
SHA1(∆i, I, Pi, ai, Si). An algorithm suitable for signing and verifying is RSA.
The OpenSSL implementation of this algorithm is used here. In this algorithm
the issuer uses the public RSA key of the user to decrypt the signed message.
This public key is stored in the certificate of the user, so it does not need to be
transfered. After the verification is successful, the issuer updates the database
“reg”. The database table is constructed as follows:

This table is filled with example values to show how the elements are repre-
sented in this database, e.g. Si is a point on an elliptic curve and is represented
as [x,y].
When a new entry has been inserted, the connection is closed and the server
waits for a new client, who wants to join the group.

1Transport Control Protocol / Internet Protocol

65

CHAPTER 6. ENVIRONMENT AND
DEVELOPMENT

∆i I u v Pi

[162635, 7263655] [152651, 7636277] 52686 762365 [3516326, 623625]
[162607, 655435] [565751, 5432156] 76633 863717 [127538, 732098]
[876865, 6854632] [775535, 9867454] 13244 258098 [405277, 876237]
ai Si commonname sign(SHA1(∆i, I, Pi, ai, Si))

73625 [17787, 764882] user1 5DEF754EAFD
355376 [654437, 6565482] user2 123D5EEAFD
654315 [987652, 6554221] user3 6588FEA87B

Table 6.2: Group Registration Database Scheme

Joiner
When the join program is started, it tries to connect to the server (issuer) which
is specified in the configuration file. The prospective user also uses the OpenSSL
library to create a SSL CTX object and establishes an encrypted channel over
the existing TCP/IP connection. After a secure channel has been created, the
client receives a certificate from the server and checks whether the common
name in this certificate matches the DNS (Domain Name System) name in the
configuration file.
It also be checks if the certificate authority (CA) which signed the server certifi-
cate, exists in the file calist.pem. This file is used as a database for trusted CAs.
In practice, this file could point to a cooperative database where all trusted CAs
are registered. Also other checks, like validating the RSA public key against a
list of corrupted keys, are possible, but depend heavily on the environment.
The remaining required files are groupname.param and groupname.gpk. These
files are necessary to initialize the mathematical groups and public elements.
If the server does not reject the join query, the prospective user will compute
two random values y and r. This operation is platform dependent because in
a Linux environment there are sources for random values like /dev/urandom.
Such a source does not exist in a Windows environment, but it is possible to
use the RtlGenRandom function [16]. This function establishes a similar func-
tionality like the use of /dev/urandom, but it is called from the dynamic link
library (DLL) ADVAPI32.DLL.
The prospective user as well uses the SHA1 and RSA algorithms from the
OpenSSL library to compute hashes and sign elements negotiated in the proto-
col run. The RSA private key is extracted from the user’s certificate. The user
provides the certificate password, which decrypts the private RSA key, in the
configuration file.
When the protocol has finished and no errors occurred, the user saves all nego-
tiated values to different files. To minimize the size of these files, the elements
are transformed to their base 64 representation. The base 64 function arranges
the input into 6 bit groups and maps each of them to one ASCII 2 character.

2American Standard Code for Information Interchange

66

6.2. IMPLEMENTATION OF THE SCHEME

This action prevents control characters like “space” from showing up.
The so called group secret key (gsk) values are stored in the file common-
name.gsk, where commonname is the common name of the user which is also
written in the certificate. The current witness along with the current accu-
mulator value are stored in a separate file commonname.witness to enable the
Update Witness algorithm to access this information.
The secret values in the gsk file are secured by encrypting this file with the AES
(Advanced Encryption Standard) algorithm. This algorithm is the successor of
DES and it is believed one of the most secure ciphers, today. The user is asked
to enter a password, which is at least 8 characters long, to secure his secrets.
The password is hashed with the MD5 (Message-Digest algorithm) to generate
a key for the AES. The underlying implementation of the AES algorithm was
developed by one of the designers of the algorithm.
The new group member can now use this files in the Signature protocol.

6.2.4 Signature Protocol

This is a non-interactive protocol because at first one party generates the sig-
nature and in the next step, which can be executed at any later point in time
and without the involvement of the signer, another party verifies this signature.
A Firefox plugin for this protocol exists and is described in detail in Section 6.6.

Signer
There are three arguments a user can give to this program, only two of them
must be set. The argument d is optional and informs the program about the
directory of the necessary files. These are groupname.param, groupname.gpk,
commonname.gsk and commonname.witness. Should this argument be absent,
the program searches for the files in the same directory in which it is executed.
Non-optional are the arguments f and p, which specify the file to sign and
the password to decrypt the secret values in commonname.gsk. Without these
arguments the program fails and throws out an error.
After the secret elements have been successfully decrypted and all values have
been loaded, the program generates the necessary random values. Notice that it
is again crucial which operating system is used, because on Windows and Linux
the correct random functions must be executed.
Now the computations described in Section 5.6, are executed. To map the
message to an element in the group Zp, the whole file containing the message is
hashed with SHA1 and then converted to an element.
Before the elements which represent the signature are stored to a file, they are all
converted to their base 64 representation to save space. So if the target message
is stored in the file text.txt, the signature is saved in text.txt.sign. These two
files are sent to the verifier so he can compute the hash value and verify the
given signature.

67

CHAPTER 6. ENVIRONMENT AND
DEVELOPMENT

Verifier
The verify program on the other hand, only needs two arguments. The optional
one is again the directory d, and the non-optional is the file containing the
message f . Not only the file given as an argument must be in the directory but
also the signature file.
To summarize, the required files for this program are: text.txt, text.txt.sign,
groupname.param, groupname.gpk and groupname.accu (in this file the current
accumulator value is stored).
After all the elements are initialized and loaded, the message file is hashed and
mapped to an element in Zp. Now all the tests described in the overview in 5.6
are executed and the values T1, T2, T3,Π1,Π2 and Π3 are verified. If all elements
pass the tests and no error occurs, the program reports success to the calling
environment and the signature is valid.

6.2.5 Update Witness Algorithm

This program is bundled with the sign program. It also uses the configuration
file sign.conf. Only the signer has a reason to update his witness. Like the verify
program, the update witness algorithm has two arguments. First the working
directory d to specify the location of the public files, second the password p to
decrypt the secret user values. The working directory argument is optional.
First it is checked whether the password has the correct length. If this check
fails a -2 will be returned to the calling environment telling the user that he
typed in the wrong password.
Now the gsk file is decrypted and all important values are initialized. Then an
SSL connection to the accumulator server, which is specified in the configura-
tion file, is established. The common name of the server certificate is checked
to ensure that the program is connected to the correct server, and it is checked
whether the certificate is authenticated by an authority listed in the calist.pem
file.
The following computational step is the implementation of the algorithm de-
scribed in Section 5.7. Every time a new ak is retrieved from the server, this
program checks whether ak equals the ai of the user. If this case occurs, an
error will be thrown out to inform the user that he is revoked from the group
and can no longer update his witness.
If no errors occur, the updated witness will be stored in the file common-
name.witness or in any other witness file specified in the configuration file.

6.2.6 Update Accumulator Algorithm

This program is bundled with the verify program. It uses the same configuration
file verify.conf. A verifier can only be certain that a given signature is valid, if
he tries to verify it with the current accumulator value. When a group member
has been revoked, the value is updated and only then, a verifier with the most

68

6.2. IMPLEMENTATION OF THE SCHEME

recent value can detect a revoked member.
The only argument which is optional is the working directory d.
The procedure is nearly the same as in the Update Witness algorithm. The
client connects with a secure SSL connection to the server and verifies the cer-
tificate. Then the client gets the current accumulator value and saves it in
groupname.accu or in any other accumulator file given in the configuration file.

6.2.7 Open Algorithm

This program should only be accessible to group administrators, because it vio-
lates the anonymity of the users and needs a ready-only access to the registration
database.
Again there are two arguments d and f , whereas the working directory d is
optional and f specifies the file containing a signature. Unlike the Verify pro-
gram this algorithm only needs the .sign file. Let us assume that the group
administrator has verified the signature with the Verify program to be sure
that this is a correct and valid signature.
After all public parameters and the opening key (groupname.ok) are loaded, the
program computes ∆i by decrypting the EL Gamal encryption. This value is
compared to the ∆ column in the registration database. If a match is found,
the member who has produced the signature will be identified.
A non-interactive zero-knowledge proof of knowledge is produced, to prove that
only a group administrator is able to execute the open algorithm . This proof
is described in 5.9. The used hash algorithm is again SHA1 of the OpenSSL
library.
In the end, a .rho file with information about the member and the proof is
created. If there is no match in the ∆ column, the file will be named non.rho.
Such a case is evidence for an error, for example the signature was not from this
group or there was an error when the signature was created or transferred.
Normally, this program can match the signature to a member and the file is
named commonname.rho (commonname is the common name of the signing
user).

6.2.8 Revoke Algorithm

With this program, a group administrator can revoke a member from the group.
To revoke a member, a proof from the open algorithm must be given to the pro-
gram via the f argument. The working directory argument d is, as always,
optional.
In most group structures the opener and the revoker should be different entities
to be ensure that not a single group administrator can revoke a member.
After the program has initialized all values from the files groupname.param,
groupname.gpk and groupname.ik (the issuing key), the program connects to

69

CHAPTER 6. ENVIRONMENT AND
DEVELOPMENT

the accumulator database. Now it tries to make sure that the given member
is not already revoked. Then the program computes a new accumulator value
with the calculations shown in Section 5.11.
This new updated accumulator value is stored along with ai, from the now re-
voked member i, in the accumulator database.

6.2.9 Judge Algorithm

To verify a proof generated by the Open algorithm, the judge algorithm is
used. The three arguments are d (optional), f1 (the file containing the signa-
ture; .sign) and f2 (the file containing the proof of knowledge from the opener;
.rho).
The algorithm computes the steps described in Section 5.10. If all tests return
true, the proof of the opener is valid.
The hash algorithm is SHA1 from the OpenSSL library.

6.3 Compiling on Different Platforms

The execution of a compiler, like g++, produces an executable file. On Linux,
most of the programs are not pre-compiled when a user gets them. Just all
source files and libraries are provided for a user along with a so called config-
ure shell script. This script tries to find all platform dependent variables, e.g.
if the processor is able to compute 64 bit operations. So this script generates a
Makefile in which all gathered information are stored. Basically, this Makefile
consists of all compiler calls which have to be made during the compiling phase,
and the correct flags for these calls.
There are several problems with a configure script. A major problem is that
these scripts are not executable on an operating system like Windows. Another
one is their generation; they are generated by a program named GNU Auto-
conf, which is not very user friendly.
For Autoconf, a script configure.ac and templates Makefile.in must be written
first. When these files are provided, Autoconf constructs the script configure.
Should everything execute without errors, this procedure is not problematic, but
if errors occur, it is not easy to find them. For example, just the configure
script of the PBC library is about 24000 columns of code.
So we take another approach to the compiling problem. We found the program
CMake [26] and tested it. It allows a programmer to easily configure and
produce a Makefile. It does not only provide platform independence, but also
compiler independence. So a user can try to compile the code which was written
for this thesis and tested with g++, with Visual Studio C++. While test-
ing the CMake program the Visual Studio C++ compiler was working as
expected, but it is not possible to guarantee that every compiler, in any version

70

6.3. COMPILING ON DIFFERENT PLATFORMS

on any particular platform can compile this code without any modifications.
CMake reads in a very simple configuration file called CMakeLists.txt which
must lie in the same directory as the source code. After writing this file, a pro-
grammer can run the program CMake. It shows graphically whether there are
any errors or warnings left, which should be corrected. This program runs un-
der the following platforms: Windows, Mac OSX, Linux, SunOS Sparc, IRIX64,
HPUX 9000/785 and AIX powerpc.
CMake builds a Makefile for a native environment of the target platform, as
shown in figure 6.2.

�����������

	
���
��������

	
���������
�������

	
���������

����

������������
�����������������
������������������

������������
�����������������
������������

�������������������� ���������������
����

Figure 6.2: Raw description of the program CMake

Nevertheless, the code of this thesis is not able to run on all above mentioned
platforms, because there are code parts which are platform dependent. Espe-
cially, the random functions and the TCP connection processes are very platform
dependent. Also all libraries which are used in the code must be transferred to
the target platforms.
For example, the function tcp connect creates a Winsock object on Windows
to store all necessary information in it. In a Linux environment the same infor-
mation is stored in a struct structure.

71

CHAPTER 6. ENVIRONMENT AND
DEVELOPMENT

6.4 Coding Problems

One of the first solved problems was to find the right library for the pairing
functionality. There are many libraries to compute big integers (numbers big-
ger than 264) available, but these libraries are almost unable to construct fast
pairings or at least well suited elliptic curve groups. The only library, which
satisfies all needs of this thesis, is the PBC library, which was coded by Ben
Lynn. He also wrote his dissertation [29] about the implementation of pairings.
In the next step, the computed elements must be saved in different files and a
representation for the elements must be selected. The library provides different
functions for this. The elements can be printed as human readable numbers
or as a bit string. The bit string is shorter but it can contain different control
characters which can make it impossible to read the elements from a file. Thus,
the elements are usually saved as a human readable string, except in cases where
size matters. In these cases the bit strings are converted to a base 64 represen-
tation and saved to files.
The use of human readable integers is not unproblematic. A point on an elliptic
curve is represented as [x-coordinate, y-coordinate]. The space, the comma and
the brackets must be written to the file and be read again. The space character
is interpreted as a control character in most of the functions which operate with
files. So it makes a difference if an elliptic curve point or a positive number of
the group Zp is read by the program.
In the first approach, all data was stored in files and a new data handle layer
was written, to support this structure. Despite this effort the data storage of
all accumulator values and the complete member registration data was not effi-
cient enough. Therefore a database server, in this case the open source MySQL
solution, is used. The MySQL solution does not only provide a database server
but also a C++ API (Application Programming Interface) which can be used
to communicate with the database. This is a high-performance way to store the
produced data, besides through using a database solution many more advanta-
geous interesting possibilities arise, like backups and dedicated servers.
After clarifying the data storage, a way to construct secure network connec-
tions had to be found. The choice was made to take the obvious solution, the
OpenSSL library. It is not easy to write a multi threading OpenSSL server,
so that it can check certificates from users and manage more than one connec-
tion at a time. Again, performance is still in focus of the project. Because the
OpenSSL library, unlike the MySQL library, must be used by both, the client
and the server, it has to be transferred to Windows. An SSL connection needs
an existing TCP connection, which is platform dependent, so the SSL connec-
tion can use the TCP connection to build up a secure channel over it.
Another problem was the hash function for the zero-knowledge proofs. The
choice was made to use SHA1 because it produces exactly 160 bit output, which
is the same size as an element in the group Zp, and this algorithm is widely used.
The input values of the hash function must be formated correctly. If the wrong
size of memory is allocated to store this input, a random value, which is still in
the memory, affects the output of the hash function. This means that such an

72

6.5. INTEGRATING A TEST PORTAL

output cannot be verified on the other side of a connection and is therefore not
suitable. When the input problem was solved, the output had to be formatted
in such a way, that another function could map it to an element of the group
Zp. The hexadecimal system is used for this transformation.
The next step is the use of configuration files. First a library combined with a
shared object file was used for this task, but the transformation to Windows was
too complicated, and the library was too large to be fast. The solution is the
library SimpleIni which is a small but powerful C++ library for configuration
files. The advantage of configuration files is that the user can enter information
into these files and does not need to provide the same information, as com-
mand line arguments, every time the program is executed. Another possibility
to avoid command line arguments, is the definition of variables in the program
code. This means that after a change of the variable the program must be re-
compiled. The last alternative is the fastest one and maybe, in some use cases,
this alternative is best suited.

6.5 Integrating a Test Portal

When the different programs were ready, an Apache web server was installed
on the server system. This web server operates as a distribution center for the
accumulator scheme. New members can get their certificate and the required
programs from this web service.
It is important that this service can only be accessed over a secured channel
to assert that nobody can eavesdrop this channel and steal information. The
OpenSSL architecture, already installed on this server, can be used for the web
service as well. The web pages were now only accessible over the port 443 in-
stead of 80. When a user retrieves a page from the server, the channel is secured
by the server certificate and the server identifies itself with this certificate.
In this test case the server uses PHP (PHP: Hypertext Preprocessor), a script
language executed on the server. After the user enters his identification, the
User PKI certificate generation is called with the aid of a PHP function.
In a cooperation or other organization, there may be better ways to distribute
the certificates to each user.
The web server also provides the option of verifying a signature directly on the
website without downloading any programs. It is also possible to open and
revoke a given signature with this online service. All of these services are writ-
ten in PHP and they are formatting the given input and executing the C++
functions described in Section 6.2. No new executables are created for these
tasks, so the chance of any incompatibilities between different versions of the
program are minimized. In practice, the open and revoke functionality of such
a website should be protected by an identification system, so that only group
administrators can access these functions.

73

CHAPTER 6. ENVIRONMENT AND
DEVELOPMENT

6.6 Graphical User Interface

To provide a graphical way to sign messages and verify signatures, two Firefox
plugins were created. One plugin is able to sign messages and the other one is
able to verify signatures. Both plugins are just accessing the executables cre-
ated before. There is no difference between signatures that are verified with the
plugin, on the command line or with the web service on the server. All three
variants are producing the same results.
The drawback of GUIs (Graphical User Interfaces) is platform dependency.
There are projects which try to reach platform independence, but most of the
times the user must install a huge packet in order to run the program. So the
decision was made to use the Firefox platform due to the compatibility to most
popular platforms, and the supply of a runtime environment for the plugins.
Firefox plugins are written in two different programming languages, a descrip-
tion language and a script language. The description language is XUL (XML
(Extensible Markup Language) User Interface Language), see also [12; 22]. It
describes the design and the graphical layout of the program. Due to the Gecko
engine, which Mozilla Firefox and other Mozilla programs are using to generated
their design, the layout of the plugin has the same look on every platform. Be-
sides, the user can also change the appearance of his Mozilla product, e.g. using
a different theme, without risking to encounter incompatible plugins. XUL is
flexible enough to change the graphical layout without changing the functional-
ity.
XUL files are not compiled, like C++ files, but only interpreted by the Gecko
engine whenever the plugin is called. Through the use of XML, the XUL files
consist of human readable text and can be edited with almost any text editor
available. So the plugin can be changed quickly.
The script language is JavaScript, a language developed for web pages and the
execution on the client’s side. Besides PHP, which is executed on a server every
time a web page is requested by the client, JavaScript code is downloaded and ex-
ecuted by the client. This script language is unrelated to Java, a programming
language by Sun Microsystems, although Sun Microsystems has trademarked
JavaScript.
When programming a plugin with JavaScript, the same syntax and commands
can be used as in HTML pages. But a plugin in the Mozilla environment is much
more powerful than a script from a website because there are special JavaScript
functions available, like file operations or commands that allow to execute local
files. All these operations are forbidden for scripts from a website.
The JavaScript, just as XUL, is not compiled but interpreted at the time of
execution. One big drawback of this architecture is the performance. It is much
slower than executing the files on the command line because the program code
is interpreted on-the-fly. An overview is shown in Figure 6.3.

74

6.6. GRAPHICAL USER INTERFACE

XUL description

JavaScript functions

Mozilla Gecko engine

Figure 6.3: Overview of the Mozilla plugin scheme

A problem we encountered concerns the working directory of the plugin. If the
plugin has been installed correctly, it is usually located in a subdirectory, of-
ten called something like “application data” in the user’s directory. But when
the plugin is executed the working directory is the directory where Firefox is
installed. So if the plugin wants to use any files, for example configuration files,
it must change the directory. For this purpose all compiled programs obtained
the argument -d to specify the working directory. With the help of JavaScript,
the plugin can find its directory on the file system, and provide this information
to all programs it calls.
In a use case, there are definitely other ways to provide a user with a graphical
user interface. For example, if all possible users of a group use the Windows
operating system, the programs could be easily given a GUI with the use of the
Visual Studio environment from Microsoft.

75

7 Future Work

The proposed implementation in this thesis should be tested in more environ-
ments and could be implemented in many more programming languages to pro-
vide a better compatibility. Some systems, like Mac, and also architectures, like
a 64 bit processor, are not supported yet. But the implementation was tested
on a 64 bit processor and due to the Linux compatibility it should also run on
a Mac without many changes, although the implementation could be optimized
for such conditions.
Maybe it would also be possible to implement this scheme on small processors
like micro controllers. The groups for the pairing could be chosen small enough
and a fast pairing based library must be supported on the particular controller.
In some environments, like car security, the security requirements of the pre-
sented scheme are probably interesting.
Also, the implementation as a Firefox plugin may not be the right way to reach
most of the users in a normal network. Many users use the Internet Explorer to
browse the web. So a small application with high usability could be the better
solution in some cases. A platform independent graphical user interface could
be constructed by other software solutions, like Qt [1]. With such solutions,
the changes in the implementation, by a platform transformation, should be
minimal but there will be many problems with speed and layout of the resulting
program.
The software library PBC which is used for all pairing based calculations is one
of the first libraries capable of this pairing functionality. Pairing based cryp-
tography in general is not widely used. So it is possible that in the near future,
with the upcoming of more pairing based algorithms, new faster applications
and libraries appear and this implementation could be improved with these new
ideas.
Maybe it is also possible to construct a new group encryption scheme building
up on this scheme. The public accumulator value could be the public key and
only a member of the group, who has not been revoked and therefore has a valid
witness, could decrypt a given ciphertext. For example, a user could encrypt
information and be sure that only a specific group of people, e.g. Doctors, can
decrypt and read the message.

76

8 Conclusion

The goal of this thesis was the implementation of a dynamic accumulator cryp-
tography system based on pairings and zero-knowledge proofs. One main aspect
of the implemented scheme is the independence of calculations linked to the
number of members in the group or revoked members. With this implementa-
tion it is possible to let any number of users join the group without changing the
accumulator value or the group public key. Only the revocation of a member
will change that value. The implementation is predominantly platform inde-
pendent and the parts which are currently implemented only for one operating
system can be easily migrated to almost any other platform.
In the Appendix B we show that our group signature can compare in size with
a standard digital signature. Also the Appendix C illustrates a speed compar-
ison between our scheme and a standard digital signature scheme. Although
our scheme is slower than a digital siganture scheme, the execution times are
definitely fast enough to use our scheme in practice.
Another point is that the scheme is well distributable. The server which dis-
tributes the accumulator value can be positioned in a network like any other
database server, as long as this database supports some kind of replication
modes. Just as well as the accumulator, the prospective user and the opener
can be positioned in a network. All of these administrative positions can be
observed to guarantee the trustworthiness.

77

Bibliography

[1] Nokia Corporation and/or its subsidiaries. Qt Cross-Platform Applica-
tion Framework. http://trolltech.com/products/qt/, 2008. [Online;
accessed 14-12-2008].

[2] Giuseppe Ateniese, Jan Camenisch, Marc Joye, and Gene Tsudik. A Prac-
tical and Provably Secure Coalition-Resistant Group Signature Scheme. In
CRYPTO ’00: Proceedings of the 20th Annual International Cryptology
Conference on Advances in Cryptology, pages 255–270, London, UK, 2000.
Springer-Verlag.

[3] Niko Bari and Birgit Pfitzmann. Collision-Free Accumulators and Fail-Stop
Signature Schemes Without Trees. In EUROCRYPT, pages 480–494, 1997.

[4] Mihir Bellare, Daniele Micciancio, and Bogdan Warinschi. Foundations of
group signatures: Formal definitions, simplified requirements, and a con-
struction based on general assumptions. In Proceedings of Eurocrypt 2003,
volume 2656 of LNCS, pages 614–629. Springer-Verlag, 2003.

[5] Mihir Bellare and Phillip Rogaway. Random oracles are practical: a
paradigm for designing efficient protocols. pages 62–73. ACM Press, 1993.

[6] Mihir Bellare, Haixia Shi, and Chong Zhang. Foundations of group sig-
natures: The case of dynamic groups. In In proceedings of CT-RSA 05,
LNCS series, pages 136–153. Springer-Verlag, 2005.

[7] Josh Cohen Benaloh and Michael de Mare. One-Way Accumulators: A
Decentralized Alternative to Digital Signatures (Extended Abstract). In
EUROCRYPT, pages 274–285, 1993.

[8] Albrecht Beutelspacher, Jörg Schwenk, and Klaus-Dieter Wolfenstetter.
Moderne Verfahren der Kryptographie. Von RSA zu Zero-Knowledge.
Vieweg, 2006.

[9] Dan Boneh and Xavier Boyen. Efficient Selective-ID Secure Identity-Based
Encryption Without Random Oracles. In EUROCRYPT, pages 223–238,
2004.

78

http://trolltech.com/products/qt/

BIBLIOGRAPHY

[10] Dan Boneh and Xavier Boyen. Short Signatures without Random Oracles.
In Advances in Cryptology - EUROCRYPT 2004, pages 56–73. Springer-
Verlag, 2004.

[11] Dan Boneh, Emily Shen, and Brent Waters. Strongly unforgeable signa-
tures based on computational Diffie-Hellman. In In Proc. of PKC 2006,
pages 229–240. Springer-Verlag, 2006.

[12] David Boswell, Brian King, Eric Murphy, Ian Oescheger, and Pete Collins.
Creating Applications with Mozilla. O’Reilly & Associates, Inc., Sebastopol,
CA, USA, 2002.

[13] Jan Camenisch. Group Signature Schemes and Payment Systems Based on
the Discrete Logarithm Problem. PhD thesis, ETH Zurich, 1998. Reprint
as vol. 2 of ETH Series in Information Security and Cryptography, ISBN
3-89649-286-1, Hartung-Gorre Verlag, Konstanz, 1998.

[14] Jan Camenisch and Anna Lysyanskaya. Dynamic Accumulators and Appli-
cation to Efficient Revocation of Anonymous Credentials. In CRYPTO ’02:
Proceedings of the 22nd Annual International Cryptology Conference on
Advances in Cryptology, pages 61–76, London, UK, 2002. Springer-Verlag.

[15] David Chaum and Eugène van Heyst. Group Signatures. In EUROCRYPT,
pages 257–265, 1991.

[16] Microsoft Corporation. RtlGenRandom Function(Windows). http:
//msdn.microsoft.com/en-us/library/aa387694(VS.85).aspx, 2008.
[Online; accessed 14-12-2008].

[17] W. Diffie and M.E. Hellman. Special Feature Exhaustive Cryptanalysis of
the NBS Data Encryption Standard. Computer, 10(6):74–84, 1977.

[18] Whitfield Diffie and Martin E. Hellman. New directions in cryptography.
IEEE Transactions on Information Theory, IT-22(6):644–654, 1976.

[19] Nelly Fazio and Antonio Nicolosi. Cryptographic Accumulators: Defini-
tions, Constructions and Applications, 2002.

[20] Amos Fiat and Adi Shamir. How to prove yourself: practical solutions
to identification and signature problems. In Proceedings on Advances in
cryptology—CRYPTO ’86, pages 186–194, London, UK, 1987. Springer-
Verlag.

[21] Free Software Foundation. The GNU MP Bignum Library. http://
gmplib.org, 2008. [Online; accessed 14-12-2008].

[22] Mozilla Foundation. XUL -MDC. https://developer.mozilla.org/en/
XUL, 2008. [Online; accessed 14-12-2008].

79

http://msdn.microsoft.com/en-us/library/aa387694(VS.85).aspx
http://msdn.microsoft.com/en-us/library/aa387694(VS.85).aspx
http://gmplib.org
http://gmplib.org
https://developer.mozilla.org/en/XUL
https://developer.mozilla.org/en/XUL

BIBLIOGRAPHY

[23] Taher El Gamal. A public key cryptosystem and a signature scheme based
on discrete logarithms. In Proceedings of CRYPTO 84 on Advances in
cryptology, pages 10–18, New York, NY, USA, 1985. Springer-Verlag New
York, Inc.

[24] Darrel Hankerson, Alfred J. Menezes, and Scott Vanstone. Guide to Elliptic
Curve Cryptography. Springer-Verlag New York, Inc., Secaucus, NJ, USA,
2003.

[25] John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. Introduction
to Automata Theory, Languages, and Computation. Addison Wesley, 2nd
edition, November 2000.

[26] Kitware Inc. CMake - Cross Platform Make. http://cmake.org, 2008.
[Online; accessed 14-12-2008].

[27] Canonical Ltd. Ubuntu Home Page. http://www.ubuntu.com, 2008. [On-
line; accessed 14-12-2008].

[28] Ben Lynn. PBC Library - Pairing-Based Cryptography. http://crypto.
stanford.edu/pbc/, 2008. [Online; accessed 14-12-2008].

[29] Ben Lynn. On the Implementation of Pairing-Based Cryptography, 2009.

[30] Shigeo MITSUNARI, Ryuichi SAKAI, and Masao KASAHARA. A New
Traitor Tracing. IEICE transactions on fundamentals of electronics, com-
munications and computer sciences, 85(2):481–484, 2002.

[31] Roger M. Needham and Michael D. Schroeder. Using encryption for authen-
tication in large networks of computers. Commun. ACM, 21(12):993–999,
1978.

[32] C. Neuman, T. Yu, S. Hartman, and K. Raeburn. The Kerberos Network
Authentication Service (V5). RFC 4120 (Proposed Standard), July 2005.
Updated by RFCs 4537, 5021.

[33] Lan Nguyen. Accumulators from Bilinear Pairings and Applications. In
CT-RSA, pages 275–292, 2005.

[34] Dawn Song and Gene Tsudik. Quasi-efficient revocation of group sig-
natures. In Proceedings of Financial Cryptography 2002, pages 183–197.
Springer-Verlag, 2002.

[35] Wikipedia the free encyclopedia. A5/1 - Wikipedia. http://en.
wikipedia.org/wiki/A5/1, 2008. [Online; accessed 14-12-2008].

[36] Wikipedia the free encyclopedia. Digital Signature Algorithm - Wikipedia.
http://en.wikipedia.org/wiki/Digital_Signature_Algorithm, 2008.
[Online; accessed 14-12-2008].

80

http://cmake.org
http://www.ubuntu.com
http://crypto.stanford.edu/pbc/
http://crypto.stanford.edu/pbc/
http://en.wikipedia.org/wiki/A5/1
http://en.wikipedia.org/wiki/A5/1
http://en.wikipedia.org/wiki/Digital_Signature_Algorithm

BIBLIOGRAPHY

[37] Wikipedia the free encyclopedia. Dictionary attack - Wikipedia. http:
//en.wikipedia.org/wiki/Dictionary_attack, 2009. [Online; accessed
11-03-2009].

[38] Inc. VeriSign. VeriSign - Security (SSL Certificates), Intelligent Com-
munications, Domain Name Services, and Identity Protection. http:
//www.verisign.com, 2008. [Online; accessed 14-12-2008].

81

http://en.wikipedia.org/wiki/Dictionary_attack
http://en.wikipedia.org/wiki/Dictionary_attack
http://www.verisign.com
http://www.verisign.com

A Installation Procedure

In this section we give an overview over the installation of all programs con-
structed this scheme. First the installation of the server, which is a Linux based
environment, is discussed. Note that most of the group administrator’s tasks
should be distributed to more than one machine and person. Next the installa-
tion in a Windows environment is given, so that users can use these programs,
for example the Firefox plugin. All given examples have been tested and work
as intended. But keep in mind that this is only a test configuration and could
be implemented on other platforms if the field of application demands this.

A.1 Linux Installation

This subsection describes installing Ubuntu Linux [27] on a machine. The
needed packages are given in brackets after the name of the program.

1. Download and install a Ubuntu version. In a commercial environment the
LTS (Long Time Support) version is a good choice, so that the operation
system is supported with long time updates.
Install the desktop version if a graphical user interface is needed for the
administrators.

2. After the system is updated, install the OpenSSL (openssl, libssl), GMP
(libgmp or [21]), and PBC [28] library. The PBC library must be down-
loaded from the project site and be installed by a typical install chain
(./configure, make, sudo make install).

3. Also the CMake [26] program must be installed on the platform. The
necessary package is cmake.

A.1.1 Server Installation

Next, the required server applications are installed. Most of these applications
depend on many packages but the package managers of most Linux operating
systems resolve these dependencies without any problem. In this example, the
Ubuntu package manager apt-get tries to find all necessary packages.

1. The first server is the MySQL server (mysql-server). It will automatically
install about 20 depending packages. It is important that only one main

82

A.2. FIREFOX PLUGIN INSTALLATION

MySQL server exists, so that there is one accumulator value database
and one registration database. The MySQL library (libmysqlclient) must
also be installed. Now the programs can be compiled and can access the
database.

2. Next the Apache web server (apache2) should be installed to provide a
platform where users can be registered and signatures can be validated.
A server certificate for this web server should be created and the SSL
modification must be enabled, so this server listens on port 443. The
PHP (libapache2-mod-php5) modification must also be installed if the
web service described in Section 6.5 will be used.

3. All mentioned server applications have graphical add-on programs which
are very useful for a quick and easy administration.

After we have installed all programs on the Linux machine, the server is ready
for the programs. The first application Group key generation can be com-
piled and executed. To compile a application, just extract it into a directory,
open a terminal session and execute the commands cmake . and ccmake . .
When all parameters are set correctly, the program can be compiled with the
command make. The subdirectory /build contains the compiled program. Af-
ter the program Group key generation is compiled, the group manager can
construct the group and all its values.
The next programs which are located on the server, are Issuer and Send ac-
cumulator. The compiling steps are similar to those described above, in the
Group key generation application. Both are daemons and can be started at
the startup of the operating system. The Issuer daemon integrates a new user
into the group and updates the necessary MySQL databases. The Send accu-
mulator daemon sends the current accumulator value to a user or all necessary
values to a member who updates his witness.
The issuing server needs the issuing key which is also important for the Revoke
program. So both applications should be installed on the same server and the
MySQL databases must be accessible.
The Open program should be installed on a different server to split the admin-
istrative operations and the opening and issuing key. But the Open program
must be able to connect to the registration database.
The Sign and Verify applications can be compiled under Windows and Linux.
In a Windows environment the program CMake must be installed and a graph-
ical user interface guides the user during the process of making a makefile.
The Judge program can be installed on any platform.

A.2 Firefox Plugin Installation

To install a Firefox plugin just drag and drop the .xpi file into the Mozilla
application. After the plugin is installed the configuration files (sign.conf or

83

APPENDIX A. INSTALLATION PROCEDURE

verify.conf) should be modified by the user. Also the user files .gsk and .witness
must be copied to the folder of the plugin. Depending on the platform the folder
can be found in different locations:

Windows:
C:\Documents and Settings\<Windows login/user name>\
Application Data\Mozilla\Profiles\<Firefox user name>
\extensions\<folder of the plugin>\,

Linux (Ubuntu):
/home/<Linux login/user name>/.mozilla/firefox/
<Firefox user name>/extensions/<folder of the plugin>/.

After the plugin has been installed and configured, the user can select any
kind of text in the Firefox application and press the right mouse button. The
context menu shows the operations sign or verify or both. If the user selects
one operation the program guides him through the process.
In the subfolder /Content the program code can be found. The files main.xul
and dialog.xul describe the graphical layout of the plugin. The files main.js
and mydialog.js contain the javascript code, which is executed and calls the
appropriate function.

84

B Space Comparison with PKI-
based Certificates

In this chapter the size of a normal standard X.509 certificate is compared to
the size of our signature scheme. Both mechanisms provide different security
requirements.

B.1 X.509 Certificate and Signature

The following certificate was created by the OpenSSL program. The information
given in this certificate is only exemplary and is short on purpose.

Certificate:
Data:

Version: 3 (0x2)
Serial Number: 22 (0x16)
Signature Algorithm: sha1WithRSAEncryption
Issuer: C=DE, ST=NRW, O=Test Cooperation, OU=IT section,
CN=User CA/emailAddress=userCA@localhost
Validity

Not Before: Oct 20 08:13:00 2008 GMT
Not After : Oct 20 08:13:00 2009 GMT

Subject: C=DE, ST=NRW, O=TestCooperation, OU=IT,
CN=cf3580f613d52db8535b7a5f6d02c3ef751f3ad7
/emailAddress=l@test.de
Subject Public Key Info:

Public Key Algorithm: rsaEncryption
RSA Public Key: (1024 bit)

Modulus (1024 bit):
00:a4:f8:37:36:83:95:36:e2:e5:3b:53:64:b3:63:
0e:49:18:0e:3a:d5:98:d0:fb:f4:b9:74:3c:9c:b7:
4d:a5:b8:26:ad:a0:2d:94:b3:4f:26:ca:a2:87:08:
19:de:40:f8:58:48:75:66:ef:98:cf:8b:06:67:dd:
5b:19:db:7a:05:c6:dd:e1:f4:f3:25:38:98:69:25:
f0:cf:7f:bb:d9:d0:f6:97:8d:3f:d0:1c:fd:10:38:
f3:f9:21:b7:52:b9:ea:67:9b:5d:75:17:8a:bf:01:
c5:25:86:e1:f6:47:b7:3e:46:ed:00:9b:db:b0:11:

85

APPENDIX B. SPACE COMPARISON WITH PKI-BASED
CERTIFICATES

a4:f1:f2:68:00:5c:37:97:0b
Exponent: 65537 (0x10001)

X509v3 extensions:
X509v3 Basic Constraints:

CA:FALSE
Netscape Comment:

OpenSSL Client Certificate
X509v3 Subject Key Identifier:

E4:67:63:0B:78:D5:EC:92:1C:A9:4D:23:A9:13:50:
26:B7:CC:D3:49

X509v3 Authority Key Identifier:
keyid:49:2E:B7:B8:A8:89:C4:0E:AA:3D:26:BC:30:
0E:CC:BC:EB:00:AE:00

Signature Algorithm: sha1WithRSAEncryption
3b:64:e8:d9:66:71:6c:03:f2:a3:bb:96:62:6c:76:57:d9:65:
6c:60:26:1f:15:92:a4:a3:a2:9f:fa:7e:39:b1:52:32:cb:0a:
c4:c0:3b:e4:d9:e8:3a:63:f2:09:be:7d:57:71:ba:11:3a:3f:
86:7e:c6:7b:54:36:1f:6c:fc:bb:6f:67:c9:d4:1b:a5:48:5f:
e0:3d:e6:59:8d:0a:f4:f3:78:97:50:dc:b5:ef:68:14:6d:29:
21:7d:3e:36:57:10:32:f7:89:66:4d:e6:32:ce:40:ad:8e:dc:
81:ff:56:70:07:40:13:8e:c9:1f:80:83:c3:f4:ec:00:59:48:
c1:9f:e4:33:5d:f6:85:a0:8d:f2:9f:45:a5:01:1f:b2:09:c2:
fc:a5:a4:f5:c9:d0:56:8f:41:8c:d2:17:c3:8c:55:37:72:ed:
cc:d1:6f:31:7d:72:c4:43:31:bf:81:9a:a9:29:07:a3:8a:38:
0a:05:d8:a8:34:9f:0b:e5:2e:a2:83:3b:03:f4:90:b9:c9:7c:
38:cb:af:78:3c:d2:9d:fc:b5:13:ed:ea:95:2d:19:8d:41:5c:
6a:40:ff:6b:ec:44:05:59:c1:22:36:dc:e2:0c:3f:62:d7:6f:
a9:3f:d1:4f:c8:6c:75:5f:ec:e5:98:5a:2e:79:e3:13:7a:f6:
8a:56:fd:68

To calculate the size of the certificate the base 64 representation is used. No
leading blanks and other fill characters appear after the conversion. The used
text is given below.

-----BEGIN CERTIFICATE-----
MIIDfTCCAmWgAwIBAgIBFjANBgkqhkiG9w0BAQUFADB+MQswCQYDVQQGEwJERTEM
MAoGA1UECBMDTlJXMRkwFwYDVQQKExBUZXN0IENvb3BlcmF0aW9uMRMwEQYDVQQL
EwpJVCBzZWN0aW9uMRAwDgYDVQQDEwdVc2VyIENBMR8wHQYJKoZIhvcNAQkBFhB1
c2VyQ0FAbG9jYWxob3N0MB4XDTA4MTAyMDA4MTMwMFoXDTA5MTAyMDA4MTMwMFow
gY8xCzAJBgNVBAYTAkRFMQwwCgYDVQQIEwNOUlcxGDAWBgNVBAoTD1Rlc3RDb29w
ZXJhdGlvbjELMAkGA1UECxMCSVQxMTAvBgNVBAMTKGNmMzU4MGY2MTNkNTJkYjg1
MzViN2E1ZjZkMDJjM2VmNzUxZjNhZDcxGDAWBgkqhkiG9w0BCQEWCWxAdGVzdC5k
ZTCBnzANBgkqhkiG9w0BAQEFAAOBjQAwgYkCgYEApPg3NoOVNuLlO1Nks2MOSRgO
OtWY0Pv0uXQ8nLdNpbgmraAtlLNPJsqihwgZ3kD4WEh1Zu+Yz4sGZ91bGdt6Bcbd
4fTzJTiYaSXwz3+72dD2l40/0Bz9EDjz+SG3UrnqZ5tddReKvwHFJYbh9ke3Pkbt

86

B.2. DYNAMIC CRYPTOGRAPHIC ACCUMULATOR SIGNATURE

AJvbsBGk8fJoAFw3lwsCAwEAAaN4MHYwCQYDVR0TBAIwADApBglghkgBhvhCAQ0E
HBYaT3BlblNTTCBDbGllbnQgQ2VydGlmaWNhdGUwHQYDVR0OBBYEFORnYwt41eyS
HKlNI6kTUCa3zNNJMB8GA1UdIwQYMBaAFEkut7ioicQOqj0mvDAOzLzrAK4AMA0G
CSqGSIb3DQEBBQUAA4IBAQA7ZOjZZnFsA/Kju5ZibHZX2WVsYCYfFZKko6Kf+n45
sVIyywrEwDvk2eg6Y/IJvn1XcboROj+GfsZ7VDYfbPy7b2fJ1BulSF/gPeZZjQr0
83iXUNy172gUbSkhfT42VxAy94lmTeYyzkCtjtyB/1ZwB0ATjskfgIPD9OwAWUjB
n+QzXfaFoI3yn0WlAR+yCcL8paT1ydBWj0GM0hfDjFU3cu3M0W8xfXLEQzG/gZqp
KQejijgKBdioNJ8L5S6igzsD9JC5yXw4y694PNKd/LUT7eqVLRmNQVxqQP9r7EQF
WcEiNtziDD9i12+pP9FPyGx1X+zlmFoueeMTevaKVv1o
-----END CERTIFICATE-----

The size of this certificate is 1269 bytes long. An advantage of a standard
certificate is the long-life cycle. Once transferred, a client can save it for future
use. For a signature of a text, not only the certificate must be transferred but
also the signed message. In this case the algorithm used is 1024 bit RSA, so the
signature is 128 bytes long. Therefore the final size is 1397 bytes.

B.2 Dynamic Cryptographic Accumulator Sig-
nature

In the signature protocol, see Section 5.6, of this dynamic cryptographic ac-
cumulator scheme certain values are transferred. In combination, these values
assemble the signature. A certificate as presented in the section above is not
necessary. The values are:

(E,Λ, U1, U2, R, T1, T2, T3,Π1,Π2,Π3, s0, s1, s2, s3, s4, s5, s6, s7, s8)

The size of the individual elements depends on the chosen pairing. All possible
sizes are explained in [29] on page 75.
The type A pairing is a symmetric pairing with an embedding degree of 2. It
is very fast but the group size itself is relatively large. In this special case the
group size is not the only relevant criterion.
The pairing type F is an asymmetric pairing with an embedding degree of 12.
The group G1 is very small but the group G2 is, due to the degree, very large.
One of the main drawbacks of all asymmetric pairings is the speed. Due to the
complexity of the pairing the operations are much slower.
The different pairings result in different signature sizes which are described
below.

The complete size of the signatures is now calculated.

87

APPENDIX B. SPACE COMPARISON WITH PKI-BASED
CERTIFICATES

Elements Type A Type F
E 513 161
Λ 1024 1920
U1 513 161
U2 513 161
R 513 161
T1 513 161
T2 513 161
T3 513 161
Π1 1024 1920
Π2 1024 1920
Π3 1024 1920
s0 160 160
s1 160 160
s2 160 160
s3 160 160
s4 160 160
s5 160 160
s6 160 160
s7 160 160
s8 160 160

Table B.1: Comparison of Pairings

88

B.2. DYNAMIC CRYPTOGRAPHIC ACCUMULATOR SIGNATURE

Type A : 7 ∗ 513 = 3591
4 ∗ 1024 = 4096
9 ∗ 160 = 1440
→ 9127 bits
→ 1141 bytes

Type F : 7 ∗ 161 = 1127
4 ∗ 1920 = 7680
9 ∗ 160 = 1440
→ 10247 bits
→ 1281 bytes

As a result, the type A pairing is selected for the scheme. Maybe newer and
better suited pairings may be presented in the near future which can replace this
choice. The resulting signature is smaller than the standard signature combined
with a certificate. When only the signature without the certificate is sent to a
verifier the standard signature is shorter.

89

C Speed Comparison with PKI-
based Certificates

Here our implemented group signature scheme is compared to the OpenSSL
applications. Both projects have different security requirements and foci in the
utilization. But the OpenSSL project is one of the most popular signature im-
plementations today. So it is one of the best candidates to compare to.
The times below are the arithmetic average of ten runs of the program. The
applications were compiled by the GNU compiler version 4.3.2-1ubuntu11 and
ran on a Intel Core 2 Duo E6750 2× 2.66GHz under Linux Ubuntu 8.10.

Scheme group generation join stage sign stage verify stage

OpenSSL 0.151 s 0.100 s 0.009 s 0.007 s
GSS 0.189 s 0.900 s 0.708 s 0.800 s

Table C.1: Speeds of different Operations

In the group generation phase the OpenSSL application creates a random file
and a root certificate. In the case of the accumulator scheme the group key
generation algorithm is executed.
Notice that the join stage is just the creation of a certificate when using OpenSSL.
Our implementation uses a network protocol and depends heavily on the net-
work speed, so the stated times can vary in practice.
The large differences in the sign and verify stage result mostly from the mathe-
matical equations used in the implementations. In case of OpenSSL, a signature
is created and verified with only one exponentiation. The group siganture ver-
ify algrithm needs 22 multiplications, 7 additions, 15 exponentiations and 13
pairing operations.

90

	Introduction
	Motivation
	Aim of the Thesis
	Organization of the Thesis

	Mathematical Background
	Notation and Definitions
	Elliptic Curves
	Zero-knowledge Protocols
	Non-interactive Zero-knowledge Protocols

	Complexity Assumptions

	Authentication
	Digital Signature Schemes
	Digital Certificates
	Public Key Infrastructures
	Drawbacks of PKIs

	Group Signatures Schemes
	Formal Definition of Group Signatures
	Overview of the Presented Group Signature Scheme
	Security Requirements

	Dynamic Cryptographic Accumulators
	Definitions of Cryptographic Accumulators
	Definition of Dynamic Cryptographic Accumulators

	Dynamic Accumulator Scheme from Bilinear Pairings
	Features of the Scheme
	Overview of the Scheme
	Group Key Generation
	User PKI Certificate Generation
	Join Protocol
	Proof of Knowledge

	Signature Protocol
	Sign
	Verify
	Security Proof of the Underlying Zero-knowledge Protocol

	Update Witness Algorithm
	Update Accumulator Algorithm
	Open Algorithm
	Judge Algorithm
	Proof of the Non-interactive Zero-knowledge Protocol

	Revoke Algorithm
	Proof of the Security Requirements

	Environment and Development
	Programming Language and Libraries
	Implementation of the Scheme
	User PKI Certificate Generation
	Group Key Generation
	Join Protocol
	Signature Protocol
	Update Witness Algorithm
	Update Accumulator Algorithm
	Open Algorithm
	Revoke Algorithm
	Judge Algorithm

	Compiling on Different Platforms
	Coding Problems
	Integrating a Test Portal
	Graphical User Interface

	Future Work
	Conclusion
	Installation Procedure
	Linux Installation
	Server Installation

	Firefox Plugin Installation

	Space Comparison with PKI-based Certificates
	X.509 Certificate and Signature
	Dynamic Cryptographic Accumulator Signature

	Speed Comparison with PKI-based Certificates

